如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA⊥PD,E,F(xiàn)分別為PC,BD的中點.證明
(1)EF平面PAD;
(2)EF⊥平面PDC.
證明:(1)連接AC,在△CPA中,因為E,F(xiàn)分別為PC,BD的中點,
所以EFPA.而PA?平面PAD,EF?平面PAD,
所以直線EF平面PAD.
(2)因為平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD?平面ABCD,且CD⊥AD,
所以CD⊥PA.又因為PA⊥PD,且CD,PD?平面PDC,
所以PA⊥平面PDC.而EFPA,所以EF⊥平面PDC.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖示,在底面為直角梯形的四棱椎P-ABCD中,ADBC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2
3
,BC=6.
(1)求證:BD⊥平面PAC;
(2)求二面角A-PC-D的正切值;
(3)求點D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

球的半徑為8,經(jīng)過球面上一點作一個平面,使它與經(jīng)過這點的半徑成45°角,則這個平面截球的截面面積為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在正方體ABCD-A1B1C1D1中,E是棱DD1的中點.
(1)求直線BE和直線CD所成角的余弦值;
(2)在棱C1D1上是否存在一點F,使B1F平面A1BE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PD垂直于底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E為PA的中點.
(1)如圖,若正視方向與AD平行,請在下面(答題區(qū))方框內(nèi)作出該幾何體的正視圖并求出正視圖面積;
(2)證明:DE平面PBC;
(3)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,空間四邊形ABCD被一平面所截,截面EFGH是平行四邊形.
(1)求證:CD平面EFGH;
(2)如果AB=CD=a,求證:四邊形EFGH的周長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如下的三個圖中,左面的是一個長方體截去一個角所得多面體的直觀圖,它的主視圖和左視圖在右面畫出(單位:cm).(1)按照給出的尺寸,求該多面體的體積;(2)在所給直觀圖中連結(jié)BC′,證明:BC′面EFG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點,D為PB中點,且△PMB為正三角形,
(Ⅰ)求證:MD平面APC;
(Ⅱ)求證:平面ABC⊥平面APC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,且PA⊥面ABCD,PA=AB,E為PD的中點.
(1)求證:直線PB面ACE
(2)求證:直線AE⊥面PCD
(3)求直線AC與平面PCD所成角的大小.

查看答案和解析>>

同步練習(xí)冊答案