6.乒乓球隊(duì)的8名隊(duì)員中有3名主力隊(duì)員,要派5名隊(duì)員參加團(tuán)體比賽,其中的3名主力隊(duì)員安排在第一、第三、第五位置,其余5名隊(duì)員選2名安排在第二、第四位置,那么不同的出場(chǎng)安排共有120種.(用數(shù)字作答)

分析 安排3名主力隊(duì)員安排在第一、第三、第五位置,然后安排第二、第四位置,求解即可.

解答 解:3名主力隊(duì)員安排在第一、第三、第五位置,有$A_3^3$種排法,其余5名隊(duì)員選2名安排在第二、第四位置,有$A_5^2$種排法.那么不同的排法共有$A_3^3A_5^2$=120種.
故答案為:120.

點(diǎn)評(píng) 本題考查排列組合的實(shí)際應(yīng)用,考查分析問題解決問題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知a>1,且b>1,若a+b=6,則(a-1)(b-1)的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=max+a2x-1,(a>0且a≠1,m∈R).
(1)若a=$\frac{1}{2}$,m=1時(shí),試判定函數(shù)y=f(x)的單調(diào)性;
(2)當(dāng)m=2時(shí),函數(shù)y=f(x)在區(qū)間x∈[-1,1]上的最大值是14,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1為a(a∈R),且$\frac{1}{a_1},\frac{1}{a_2},\frac{1}{a_4}$成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)n∈N*,試比較$\frac{1}{a_2}+\frac{1}{a_4}+\frac{1}{a_8}+…+\frac{1}{{{a_{2^n}}}}$與$\frac{1}{a_1}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.f(x)=$\frac{1}{2}$mx2+lnx-2x在定義域內(nèi)單調(diào)遞增,則實(shí)數(shù)m取值范圍為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知$sinα=\frac{4}{5}$,$sinβ=-\frac{5}{13}$,$α∈({\frac{π}{2},π})$,$β∈({π,\frac{3}{2}π})$;求$sin({\frac{π}{4}-α})$,tan(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)a,b∈R,函數(shù)f(x)=lnx-ax,$g(x)=\frac{x}$.
(Ⅰ)若f(x)=lnx-ax與$g(x)=\frac{x}$有公共點(diǎn)P(1,m),且在P點(diǎn)處切線相同,求該切線方程;
(Ⅱ)若函數(shù)f(x)有極值但無零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)當(dāng)a>0,b=1時(shí),求F(x)=f(x)-g(x)在區(qū)間[1,2]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知直線l:nx+(n+1)y=1(n∈N*)與坐標(biāo)軸圍成的面積為an,則數(shù)列{an}的前10項(xiàng)和S10為$\frac{5}{11}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案