函數(shù)的單調(diào)遞減區(qū)間為( 。
A.(1,1)B.(0,1]C.[1,+∞)D.(∞,-1)∪(0,1]
B

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041451859608.png" style="vertical-align:middle;" />,所以由.又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041451906381.png" style="vertical-align:middle;" />,所以.所求函數(shù)的單調(diào)遞減區(qū)間為(0,1].
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),若函數(shù)處與直線相切,
(1)求實(shí)數(shù),的值;(2)求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)時(shí)都取得極值.
(1)求的值;
(2)若對(duì),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2,g(x)=2elnx(x>0)(e為自然對(duì)數(shù)的底數(shù)).
(1)求F(x)=f(x)-g(x)(x>0)的單調(diào)區(qū)間及最小值;
(2)是否存在一次函數(shù)y=kx+b(k,bR),使得f(x)≥kx十b且g(x)≤kx+b對(duì)一切x>0恒成立?若存在,求出該一次函數(shù)的表達(dá)式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=lnx-ax(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a>0時(shí),求函數(shù)f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=f(x)在定義域(-,3)內(nèi)的圖像如圖所示.記y=f(x)的導(dǎo)函數(shù)為y=f¢(x),則不等式f¢(x)≤0的解集為(   )
A.[-,1]∪[2,3)B.[-1,]∪[,]
C.[-]∪[1,2)D.(-,- ]∪[,]∪[,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

,其中
(1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值;
(2)當(dāng)時(shí),若,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)=x3x2+ax+4恰在[-1,4]上單調(diào)遞減,則實(shí)數(shù)a的值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=3x2+ln x-2x的極值點(diǎn)的個(gè)數(shù)是(  )
A.0          B.1
C.2 D.無數(shù)個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案