已知在△ABC中,∠A、∠B、∠C的對邊分別為a、b、c滿足2
AB
AC
=a2-(b+c)2,求∠A的大小.
考點:余弦定理,正弦定理
專題:解三角形
分析:利用數(shù)量積運算、余弦定理即可得出.
解答: 解:∵2
AB
AC
=a2-(b+c)2,
∴2cbcosA=-(b2+c2-a2+2bc)=-2bccosA-2bc,
化為cosA=-
1
2
,∵A∈(0,π).
A=
3
點評:本題考查了數(shù)量積運算、余弦定理,考查了推理能力與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,an=(2n-1)•3n,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=4,AC=3,∠A=60°,點H是△ABC的垂心,設(shè)存在實數(shù)λ,μ,使
AH
AB
AC
,則(  )
A、λ=
1
6
,μ=
5
9
B、λ=
2
9
,μ=
4
9
C、λ=
1
3
,μ=
5
9
D、λ=
1
6
,μ=
4
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點A(2,0)是圓x2+y2=4上的定點,點B(1,1)是圓內(nèi)一點,P,Q為圓上動點,角PBQ=90°,求線段PQ中點軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖正方形ABCD的邊長為ABCD的邊長為2
2
,四邊形BDEF是平行四邊形,BD與AC交于點G,O為GC的中點,F(xiàn)O=
3
,且FO⊥平面ABCD.
(Ⅰ)求證:AE∥平面BCF;
(Ⅱ)求證CF⊥平面AEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
a
x2-2x-b(a
1
2

(1)若f(x)在[2,+∞)上是單調(diào)函數(shù),求a的取值范圍;
(2)若f(x)在[-2,3]上的最大值為6,最小值為-3,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:2x-3y=0,l2:x-y-3=0,l3:3x+y-25=0,l4:y-x-5=0
(1)求過l1,l2的交點且與l3垂直的直線方程;
(2)求直線l1,l2的交點到直線l3的距離;
(3)求直線l2,l4之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
(1)
1+2sin(3π-α)cos(α-3π)
sin(α-
2
)-
1-sin2(
2
+α)
,其中角α在第二象限;
(2)已知α是第三象限角,化簡
1+sinα
1-sinα
-
1-sinα
1+sinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c,E,F(xiàn),H∈R且滿足
a+b+c=E
ab+bc+ca=F
abc=H
問是否能用E,F(xiàn),H表示a,b,c即用含E,F(xiàn),H的代數(shù)式分別表示a,b,c能寫出過程及答案,若不能說明理由.

查看答案和解析>>

同步練習(xí)冊答案