【題目】【2017屆廣西陸川縣中學(xué)高三文上學(xué)期二!恳阎瘮(shù).
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若在上恒成立,求實數(shù)的取值范圍;
(III)在(II)的條件下,對任意的,求證:.
【答案】(I)當時,在上單調(diào)遞增,無單調(diào)遞減區(qū)間,當時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(II);(III)證明見解析.
【解析】
試題分析:(I)利用時為單調(diào)增函數(shù),時為單調(diào)減函數(shù)這一性質(zhì)來分情況討論題中單調(diào)區(qū)間問題;(II)根據(jù)函數(shù)單調(diào)性與最值,若在上恒成立,則函數(shù)的最大值小于或等于零.當時,在上單調(diào)遞增,,說明時,不合題意舍去.當時,的最大值小于零.但在上恒成立,所以只能等于零.令即可求得答案;(III)首先將的表達式表達出來,化簡轉(zhuǎn)化為的形式,再根據(jù)(II)的結(jié)論得到,后逐步化簡,原命題得證.
試題解析:(I),
當時,恒成立,則函數(shù)在上單調(diào)遞增,無單調(diào)遞減區(qū)間;
當時,由,得,由,
得,此時的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(II)由(I)知:當時,在上遞增,,顯然不成立;
當時,,只需即可,
令,則,
在上單調(diào)遞減,在上單調(diào)遞增.
.
對恒成立,也就是對恒成立,
,解得,若在上恒成立,則.
(III)證明:,
由(II)得在上恒成立,即,當且僅當時取等號,
又由得,所以有,即.
則,
則原不等式成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校舉行物理競賽,有8名男生和12名女生報名參加,將這20名學(xué)生的成績制成莖葉圖如圖所示.成績不低于80分的學(xué)生獲得“優(yōu)秀獎”,其余獲“紀念獎”.
(Ⅰ)求出8名男生的平均成績和12 名女生成績的中位數(shù);
(Ⅱ)按照獲獎類型,用分層抽樣的方法從這20名學(xué)生中抽取5人,再從選出的5人中任選3人,求恰有1人獲“優(yōu)秀獎”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種商品在天每件的銷售價格(元)與時間(天)的函數(shù)關(guān)系用如圖表示,該商品在天內(nèi)日銷售量(件)與時間(天)之間的關(guān)系如下表:
天 | ||||
件 |
()根據(jù)提供的圖象(如圖),寫出該商品每件的銷售價格與時間的函數(shù)關(guān)系式.
()根據(jù)表提供的數(shù)據(jù),寫出日銷售量與時間的一次函數(shù)關(guān)系式.
()求該商品的日銷售金額的最大值,并指出日銷售金額最大的一天是天中的第幾天.(日銷售金額每件的銷售價格日銷售量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2014課標全國Ⅰ,文12】已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點x0,且x0>0,則a的取值范圍是( ).
A.(2,+∞) B.(1,+∞)
C.(-∞,-2) D.(-∞,-1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某校高三學(xué)生的視力情況,隨機地抽查了該校1000名高三學(xué)生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分數(shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為,視力在4.6到5.0之間的學(xué)生數(shù), 的值分別為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017屆湖北省荊、荊、襄、宜四地七?荚嚶(lián)盟高三2月聯(lián)考數(shù)學(xué)(文)】已知函數(shù).
(Ⅰ)討論函數(shù)的極值點的個數(shù);
(Ⅱ)若有兩個極值點,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin ωx·cos ωx+ cos2ωx-
(ω>0),直線x=x1,x=x2是y=f(x)圖象的任意兩條對稱軸,且|x1-x2|的最小值為 .
(Ⅰ)求f(x)的表達式;
(Ⅱ)將函數(shù)f(x)的圖象向右平移個單位長度后,再將得到的圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)市政府“綠色出行”的號召,王老師每個工作日上下班由自駕車改為選擇乘坐地鐵或騎共享單車這兩種方式中的一種出行.根據(jù)王老師從2017年3月到2017年5月的出行情況統(tǒng)計可知,王老師每次出行乘坐地鐵的概率是0.4,騎共享單車的概率是0.6.乘坐地鐵單程所需的費用是3元,騎共享單車單程所需的費用是1元.記王老師在一個工作日內(nèi)上下班所花費的總交通費用為X元,假設(shè)王老師上下班選擇出行方式是相互獨立的.
(I)求X的分布列和數(shù)學(xué)期望;
(II)已知王老師在2017年6月的所有工作日(按22個工作日計)中共花費交通費用110元,請判斷王老師6月份的出行規(guī)律是否發(fā)生明顯變化,并依據(jù)以下原則說明理由.
原則:設(shè)表示王老師某月每個工作日出行的平均費用,若,則有95%的把握認為王老師該月的出行規(guī)律與前幾個月的出行規(guī)律相比有明顯變化.(注: )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com