【題目】某大學(xué)為調(diào)研學(xué)生在, 兩家餐廳用餐的滿意度,從在, 兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取了100人,每人分別對這兩家餐廳進(jìn)行評分,滿分均為60分.
整理評分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組: , , , , , ,得到餐廳分?jǐn)?shù)的頻率分布直方圖,和餐廳分?jǐn)?shù)的頻數(shù)分布表:
定義學(xué)生對餐廳評價(jià)的“滿意度指數(shù)”如下:
分?jǐn)?shù) | |||
滿意度指數(shù) |
(Ⅰ)在抽樣的100人中,求對餐廳評價(jià)“滿意度指數(shù)”為0的人數(shù);
(Ⅱ)從該校在, 兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取1人進(jìn)行調(diào)查,試估計(jì)其對餐廳評價(jià)的“滿意度指數(shù)”比對餐廳評價(jià)的“滿意度指數(shù)”高的概率;
(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.
【答案】(I)人;(II);(III)詳見解析.
【解析】試題分析:(1)對A餐廳“滿意度指數(shù)”為0,是指分?jǐn)?shù)在內(nèi),由頻率分布直方圖求出 內(nèi)的頻率,再求出人數(shù);(2)分別求出對A,B餐廳評價(jià)“滿意度指數(shù)”為0,1,2時(shí)的概率,對餐廳評價(jià)的“滿意度指數(shù)”比對餐廳評價(jià)的“滿意度指數(shù)”高包括:對餐廳評價(jià)的“滿意度指數(shù)”為1,對B餐廳評價(jià)的“滿意度指數(shù)”為0;對餐廳評價(jià)的“滿意度指數(shù)”為2,對B餐廳評價(jià)的“滿意度指數(shù)”為0;對餐廳評價(jià)的“滿意度指數(shù)”為2,對B餐廳評價(jià)的“滿意度指數(shù)”為1,由相互獨(dú)立事件計(jì)算公式,求出結(jié)果;(3)從學(xué)生對A,B餐廳評價(jià)的“滿意度指數(shù)”期望看,分別求出分布列,算出期望,得出結(jié)果.
試題解析:
(Ⅰ)由對餐廳評分的頻率分布直方圖,得
對餐廳“滿意度指數(shù)”為0的頻率為,
所以,對餐廳評價(jià)“滿意度指數(shù)”為0的人數(shù)為.
(Ⅱ)設(shè)“對餐廳評價(jià)‘滿意度指數(shù)’比對餐廳評價(jià)‘滿意度指數(shù)’高”為事件.
記“對餐廳評價(jià)‘滿意度指數(shù)’為1”為事件;“對餐廳評價(jià)‘滿意度指數(shù)’為2”為事件;“對餐廳評價(jià)‘滿意度指數(shù)’為0”為事件;“對餐廳評價(jià)‘滿意度指數(shù)’為1”為事件.
所以, ,
由用頻率估計(jì)概率得: , .
因?yàn)槭录?/span>與相互獨(dú)立,其中, .
所以
所以該學(xué)生對餐廳評價(jià)的“滿意度指數(shù)”比對餐廳評價(jià)的“滿意度指數(shù)”高的概率為.
(Ⅲ)如果從學(xué)生對, 兩家餐廳評價(jià)的“滿意度指數(shù)”的期望角度看:
餐廳“滿意度指數(shù)”的分布列為:
餐廳“滿意度指數(shù)”的分布列為:
因?yàn)?/span>;
,
所以,會選擇餐廳用餐.
注:本題答案不唯一.只要考生言之合理即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】孝感車天地關(guān)于某品牌汽車的使用年限(年)和所支出的維修費(fèi)用(千元)由如表的統(tǒng)計(jì)資料:
2 | 3 | 4 | 5 | 6 | |
2.1 | 3.4 | 5.9 | 6.6 | 7.0 |
(1)畫出散點(diǎn)圖并判斷使用年限與所支出的維修費(fèi)用是否線性相關(guān);如果線性相關(guān),求回歸直線方程;
(2)若使用超過8年,維修費(fèi)用超過1.5萬元時(shí),車主將處理掉該車,估計(jì)第10年年底時(shí),車主是否會處理掉該車?
()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵(lì)市民節(jié)約用電,實(shí)行“階梯式”電價(jià),將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費(fèi),超過200度但不超過400度的部分按0.8元/度收費(fèi),超過400度的部分按1.0元/度收費(fèi).
(1)求某戶居民用電費(fèi)用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;
(2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費(fèi)用不超過260元的點(diǎn)80%,求的值;
(3)在滿足(2)的條件下,估計(jì)1月份該市居民用戶平均用電費(fèi)用(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1,F2分別為雙曲線的左、右焦點(diǎn),P為雙曲線右支上的任意一點(diǎn),若的最小值為8a,則雙曲線的離心率e的取值范圍是( )
A. (1,+∞) B. (1,2] C. (1,] D. (1,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有三支股票, , ,28位股民的持有情況如下:每位股民至少持有其中一支股票,在不持有股票的人中,持有股票的人數(shù)是持有股票的人數(shù)的2倍.在持有股票的人中,只持有股票的人數(shù)比除了持有股票外,同時(shí)還持有其它股票的人數(shù)多1.在只持有一支股票的人中,有一半持有股票.則只持有股票的股民人數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的通項(xiàng)為an , 前n項(xiàng)和為sn , 且an是sn與2的等差中項(xiàng),數(shù)列{bn}中,b1=1,點(diǎn)P(bn , bn+1)在直線x﹣y+2=0上. (Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式an , bn
(Ⅱ)設(shè){bn}的前n項(xiàng)和為Bn , 試比較 與2的大。
(Ⅲ)設(shè)Tn= ,若對一切正整數(shù)n,Tn<c(c∈Z)恒成立,求c的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中, , 是自然對數(shù)的底數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)設(shè)函數(shù),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知在平面直角坐標(biāo)系中,圓的參數(shù)方程為 (為參數(shù))以軸為極軸, 為極點(diǎn)建立極坐標(biāo)系,在該極坐標(biāo)系下,圓是以點(diǎn)為圓心,且過點(diǎn)的圓心.
(1)求圓及圓在平而直角坐標(biāo)系下的直角坐標(biāo)方程;
(2)求圓上任一點(diǎn)與圓上任一點(diǎn)之間距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com