已知兩數(shù)-2與-5,則這兩數(shù)的等比中項(xiàng)是(  )
A、
10
B、-
10
C、±
10
D、不存在
考點(diǎn):等比數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:設(shè)-2與-8的等比中項(xiàng)是x,根據(jù)等比中項(xiàng)的定義得到x2=(-2)×(-5)=10,求出等比中項(xiàng).
解答: 解:設(shè)-2與-5的等比中項(xiàng)是x,
則有x2=(-2)×(-5)=10,
所以x=±
10
,
故選:C.
點(diǎn)評(píng):本題考查了等比中項(xiàng)的性質(zhì)應(yīng)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

G為△ABC內(nèi)一點(diǎn),且滿足
GA
+
GB
+
GC
=
0
,則G為△ABC的( 。
A、外心B、內(nèi)心C、垂心D、重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是在閉區(qū)間[0,2]上單調(diào)遞增的偶函數(shù),設(shè)a=f(-2),b=f(0),c=f(-1),則( 。
A、b<c<a
B、a<b<c
C、a<c<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
左頂點(diǎn)C,A為橢圓在第一象限的點(diǎn),直線OA交橢圓于另一點(diǎn)B,橢圓的左焦點(diǎn)為F1,若直線AF1交BC于M,且
BM
=2
MC
,則橢圓的離心率為( 。
A、
1
3
B、
1
2
C、
3
3
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系xoy中,已知A(1,0),B(0,1),C(-1,c)(c>0),且|OC|=2,若
OC
OA
OB
,則實(shí)數(shù)λ,μ的值分別是( 。
A、
3
,1
B、1,
3
C、-
3
,1
D、-1,
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|<π)的圖象的一個(gè)最高點(diǎn)為(-
π
12
,2)與之相鄰的與x軸的一個(gè)交點(diǎn)為(
π
6
,0).
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)減區(qū)間和函數(shù)圖象的對(duì)稱軸方程;
(3)用“五點(diǎn)法”作出函數(shù)y=f(x)在長度為一個(gè)周期區(qū)間上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知線段AB的端點(diǎn)B的坐標(biāo)是(1,2),端點(diǎn)A在圓(x+1)2+y2=4上運(yùn)動(dòng),求線段AB的中點(diǎn)M的軌跡方程,并說明軌跡的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,1),
b
=(2,3),當(dāng)k為何值時(shí),
(1)k
a
+2
b
與2
a
-4
b
垂直?
(2)k
a
+2
b
與2
a
-4
b
平行?平行時(shí)它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(2,0),B(0,2),C(cosα,sinα),(0<α<π).
(1)若|
OA
+
OC
|=
7
(O為坐標(biāo)原點(diǎn)),求
OB
OC
的夾角;
(2)若
AC
BC
,求sinα-cosα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案