4.我國古代數(shù)學著作《九章算術》中有如下問題:“今有蒲生一日,長三尺,莞生一日,長一尺.蒲生日自半.莞生日自倍.問幾何日而長等?”意思是“今有蒲草第一天長高3尺,菀草第一天長高1尺.以后蒲草每天長高前一天的一半,而菀草每天長高前一天的2倍,問多少天蒲草和菀草高度相同?”根據(jù)上述已知條件,可求得第2.6天,蒲草和菀草高度相同.(已知lg2=0.3010,lg3=0.4771,結(jié)果精確到0.1)

分析 由題意可利用等比數(shù)列的求和公式可得:$\frac{3(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=$\frac{{2}^{n}-1}{2-1}$,化為:2n+$\frac{6}{{2}^{n}}$=7,解出即可得出.

解答 解:由題意可得:$\frac{3(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=$\frac{{2}^{n}-1}{2-1}$,化為:2n+$\frac{6}{{2}^{n}}$=7,
解得2n=6,2n=1(舍去).
∴n=$\frac{lg6}{lg2}$=1+$\frac{lg3}{lg2}$≈2.6.
∴估計2.6日蒲、莞長度相等,
故答案為:2.6.

點評 本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.中石化集團獲得了某地深海油田塊的開采權,集團在該地區(qū)隨機初步勘探了部分幾口井,取得了地質(zhì)資料.進入全面勘探時期后,集團按網(wǎng)絡點米布置井位進行全面勘探.由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費用,勘探初期數(shù)據(jù)資料見下表:
井號I123456
坐標(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
鉆探深度(km)2456810
出油量(L)407011090160205
(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計y的預報值;
(Ⅱ)現(xiàn)準備勘探新井7(1,25),若通過1、3、5、7號井計算出的$\widehat$,$\widehat{a}$的值($\widehat$,$\widehat{a}$精確到0.01)與(I)中b,a的值差不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開,請判斷可否使用舊井?(參考公式和計算結(jié)果:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,$\sum_{i=1}^{4}{{x}_{2i-1}}^{2}$=94,$\sum_{i=1}^{4}{x}_{2i-1}{y}_{2i-1}$=945)
(Ⅲ)設出油量與勘探深度的比值k不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井數(shù)X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓M:$\frac{x^2}{a^2}+\frac{y^2}{3}$=1(a>0)的一個焦點為F(-1,0),左、右頂點分別為A,B.經(jīng)過點F的直線l與橢圓M交于C,D兩點.
(1)當直線l的傾斜角為45°時,求線段CD的長;
(2)記△ABD與△ABC的面積分別為S1和S2,求|S1-S2|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若2是函數(shù)f(x)=x3-ax(a∈R)的零點,則在(0,a)內(nèi)任取一點x0,使lnx0<0的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知正三棱錐的底面邊長為2,高為1.
(1)求該正三棱錐的體積;
(2求該正三棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設集合S={x|x2-5x+6≥0},T={x|x>1},則S∩T=(  )
A.[2,3]B.(1,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)y=f(x=2)是偶函數(shù),且當x≠2時其導函數(shù)f′(x)滿足(x-2)f′(x)>0,若2<a<3,則下列不等式式成立的是( 。
A.f(2a)<f(3)<f(log2aB.f(3)<f(log2a)<f(2aC.f(log2a)<f(3)<f(2aD.f(log2a)<f(2a)<f(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.閱讀如圖的程序框圖,則輸出的S等于( 。
 
A.55B.30C.20D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.拋物線x2=-6by的準線與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右支分別交于B、C兩點,A為雙曲線的右頂點,O為坐標原點,若∠AOC=∠BOC,則雙曲線的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.3C.$\frac{4\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

同步練習冊答案