設(shè)函數(shù)的導(dǎo)函數(shù)的最大值為3,則的圖象的一條對(duì)稱軸的方程是( )
A. | B. | C. | D. |
A
解析試題分析:對(duì)函數(shù)求導(dǎo)可得,f′(x)=ωcos(ωx+)
由導(dǎo)數(shù)f′(x)的最大值為3可得ω=3
∴f(x)=sin(3x+)-1
由三角函數(shù)的性質(zhì)可得,函數(shù)的對(duì)稱軸處將取得函數(shù)的最值結(jié)合選項(xiàng),可得x=
故選A
考點(diǎn):本題主要考查了函數(shù)的求導(dǎo)的基本運(yùn)算,三角函數(shù)的性質(zhì):對(duì)稱軸處取得函數(shù)的最值的應(yīng)用,屬于基礎(chǔ)試題,試題難度不大.
點(diǎn)評(píng):解決該試題的關(guān)鍵是先對(duì)函數(shù)求導(dǎo),由導(dǎo)數(shù)f′(x)的最大值為3,可得ω的值,從而可得函數(shù)的解析式,然后結(jié)合三角函數(shù)的性質(zhì)可得函數(shù)的對(duì)稱軸處取得函數(shù)的最值從而可得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
對(duì)于函數(shù)給出下列結(jié)論:①圖象關(guān)于原點(diǎn)成中心對(duì)稱; ②圖象關(guān)于直線成軸對(duì)稱;③圖象可由函數(shù)的圖像向左平移個(gè)單位得到;④圖像向左平移個(gè)單位,即得到函數(shù)的圖像。其中正確結(jié)論是 ( );
A.①③ | B.②④ | C.②③④ | D.①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若函數(shù),則是( )
A.僅有最小值的奇函數(shù) | B.僅有最大值的偶函數(shù) |
C.既有最大值又有最小值的偶函數(shù) | D.非奇非偶函數(shù) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com