若x0是方程ex=3-2x的根,則x0屬于區(qū)間( 。
A、(-1,0)
B、(0,
1
2
C、(
1
2
,1)
D、(1,2)
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)題意,設(shè)函數(shù)f(x)=ex-(3-2x),判斷函數(shù)f(x)在哪個(gè)區(qū)間內(nèi)存在零點(diǎn)即可.
解答: 解:根據(jù)題意,設(shè)函數(shù)f(x)=ex-(3-2x)=ex+2x-3,
∵f(-1)=e-1-2-3<0,
f(0)=e0+0-3=-2<0,
f(
1
2
)=e
1
2
+2×
1
2
-3=
e
-2<0,
f(1)=e+2-3=e-1>0,
f(2)=e2+4-3=e2+1>0,
∴f(
1
2
)•f(1)<0;
∴f(x)在區(qū)間(
1
2
,1)內(nèi)存在零點(diǎn),
即x0∈(
1
2
,1).
故選:C.
點(diǎn)評(píng):本題考查了判斷函數(shù)零點(diǎn)的應(yīng)用問題,解題時(shí)應(yīng)根據(jù)根的存在性定理進(jìn)行解答,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

a
0
3x2dx=8,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,b2+c2-bc=a2,則角A等于( 。
A、
π
3
B、
π
4
C、
π
6
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),(A>0,|φ|<π)的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)f(x)在x∈[
π
2
,
6
]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an} 的前n項(xiàng)和為Sn,若S3=1,S6=3,則a10+a11+a12=( 。
A、6B、16C、8D、32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x),若存在實(shí)數(shù)a,使函數(shù)f(x)在區(qū)間[a,a+1]和[2a,2(a+1)]上單調(diào)且增減性相反,則稱函數(shù)f(x)為H函數(shù),下列說法中正確的是
 

①函數(shù)y=x2-2x+1是H函數(shù);
②函數(shù)y=sin
1
2
x是H函數(shù);
③若函數(shù)y=x2-2tx+1是H函數(shù),則必有t≤2;
④存在周期T=3的函數(shù)f(x)=sin(ωx+φ)(ω>0)是H函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
AB
=(2,4),
AC
=(0,2),則
1
2
BC
=(  )
A、(-2,-2)
B、(2,2)
C、(1,1)
D、(-1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
1
3x
,且f(1)=
10
3

(1)求a的值;
(2)判定f(x)的奇偶性,并說明理由;
(3)令函數(shù)g(x)=f(x)-5,且g(a)=8,求g(-a)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|3≤x<7},集合B={x|2<x<10}.
(1)求A∪B:(∁RA)∩B;
(2)若C={x|a≤x≤a+1}且C⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案