11.圓(x-2)2+y2=4與圓(x+2)2+(y+3)2=9的位置關(guān)系為( 。
A.內(nèi)切B.相交C.外切D.相離

分析 由兩圓的方程可得圓心坐標(biāo)及其半徑,判斷圓心距與兩圓的半徑和差的關(guān)系即可得出.

解答 解:圓C(x-2)2+y2=4的圓心C(2,0),半徑r=2;
圓M(x+2)2+(y+3)2=9的圓心M(-2,-3),半徑 R=3.
∴|CM|=$\sqrt{(2+2)^{2}+(0+3)^{2}}$=5=R+r.
∴兩圓外切.
故選:C.

點(diǎn)評 本題考查了判斷兩圓的位置關(guān)系的方法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|x2-1|-ax-1(a∈R)
(1)若關(guān)于x的方程f(x)+x2+1=0在區(qū)間(0,2]上有兩個不同的解x1,x2
①求a的取值范圍;
②若x1<x2,求$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$的取值范圍;
(2)設(shè)函數(shù)f(x)在區(qū)間[0,2]上的最大值和最小值分別為M(a),m(a),求g(a)=M(a)-m(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≤1}\\{lo{g}_{2}(x-1),x>1}\end{array}\right.$,則f(x)≤$\frac{1}{2}$的解集為{1}∪(1,1+$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$\overrightarrow a$=(2sinx,cosx+sinx),$\overrightarrow b$=(cosx,cosx-sinx),f(x)=$\overrightarrow a$•$\overrightarrow b$.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于x的方程f(x)-m=0(m∈R)在區(qū)間(0,$\frac{π}{2}$)內(nèi)有兩個不相等的實(shí)數(shù)根x1,x2,記t=mcos(x1+x2),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知x滿足條件2(${log}_{\frac{1}{2}}$x)2+9${log}_{\frac{1}{2}}$x+9≤0,求函數(shù)f(x)=(log2$\frac{x}{3}$)•(log2$\frac{x}{4}$)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知一組實(shí)數(shù)按順序排列為:$\frac{1}{2},\frac{2}{5},\frac{3}{10},\frac{4}{17},\frac{5}{26}…$,依此規(guī)律可歸納出第7個數(shù)為$\frac{7}{50}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=msinx+n(m,n∈R)的值域是[-1,3],則實(shí)數(shù)m的值=( 。
A.2B.-2C.±2D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某船開始看見燈塔A時,燈塔A在船南偏東30°方向,后來船沿南偏東60°的方向航行45km后,看見燈塔A在船正西方向,則這時船與燈塔A的距離是( 。
A.15$\sqrt{2}$kmB.30kmC.15kmD.15$\sqrt{3}$km

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若等比數(shù)列{an}的各項均為正數(shù),且公比q=2,a3•a13=16,則a9=8.

查看答案和解析>>

同步練習(xí)冊答案