【題目】已知函數(shù),其中,.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ)當(dāng)時(shí),的單調(diào)遞增區(qū)間為;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ).
【解析】
(Ⅰ)求出函數(shù)的定義域,再求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出,
(Ⅱ)不等式恒成立轉(zhuǎn)化為,則問(wèn)題轉(zhuǎn)化為恒成立時(shí),求的取值范圍,根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出.
(Ⅰ)函數(shù)的定義域?yàn)?/span>,.
當(dāng)時(shí),,函數(shù)在區(qū)間上是增函數(shù);
當(dāng)時(shí),由,得;由,得,
所以函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).
綜上:當(dāng)時(shí),的單調(diào)遞增區(qū)間為,當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)減區(qū)間為.
(Ⅱ)不等式.
當(dāng)時(shí),取,,不合題意;
當(dāng)時(shí),令,則問(wèn)題轉(zhuǎn)化為恒成立時(shí),求的取值范圍.
由于.令,得,
當(dāng)時(shí),,當(dāng)時(shí),,
所以,函數(shù)的最大值為
,
于是由題意知,解得,
故實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),的最大值為.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(Ⅲ)當(dāng)時(shí),令,是否存在區(qū)間.使得函數(shù)在區(qū)間上的值域?yàn)?/span>若存在,求實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱錐中,底面,,,,為的中點(diǎn).
(1)求證:;
(2)若二面角的大小為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大學(xué)就業(yè)部從該大學(xué)2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機(jī)抽取了100人進(jìn)行月薪情況的問(wèn)卷調(diào)查,經(jīng)統(tǒng)計(jì)發(fā)現(xiàn),他們的月薪收入在3000元到10000元之間,具體統(tǒng)計(jì)數(shù)據(jù)如表:
月薪(百萬(wàn)) | |||||||
人數(shù) | 2 | 15 | 20 | 15 | 24 | 10 | 4 |
(1)經(jīng)統(tǒng)計(jì)發(fā)現(xiàn),該大學(xué)2018屆的大學(xué)本科畢業(yè)生月薪(單位:百元)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(每組數(shù)據(jù)取區(qū)間的中點(diǎn)值).若落在區(qū)間的左側(cè),則可認(rèn)為該大學(xué)本科生屬“就業(yè)不理想”的學(xué)生,學(xué)校將聯(lián)系本人,咨詢?cè)滦竭^(guò)低的原因,為以后的畢業(yè)生就業(yè)提供更好的指導(dǎo)意見(jiàn).現(xiàn)該校2018屆大學(xué)本科畢業(yè)生張茗的月薪為3600元,試判斷張茗是否屬于“就業(yè)不理想”的學(xué)生;
(2)①將樣本的頻率視為總體的概率,若大學(xué)領(lǐng)導(dǎo)決定從大學(xué)2018屆所有本畢業(yè)生中任意選取5人前去探訪,記這5人中月薪不低于8000元的人數(shù)為,求的數(shù)學(xué)期望與方差;
②在(1)的條件下,中國(guó)移動(dòng)贊助了大學(xué)的這次社會(huì)調(diào)查活動(dòng),并為這次參與調(diào)查的大學(xué)本科畢業(yè)生制定了贈(zèng)送話費(fèi)的活動(dòng),贈(zèng)送方式為:月薪低于的獲贈(zèng)兩次隨機(jī)話費(fèi),月薪不低于的獲贈(zèng)一次隨機(jī)話費(fèi);每次贈(zèng)送的話費(fèi)及對(duì)應(yīng)的概率分別為:
贈(zèng)送話費(fèi)(單位:元) | 50 | 100 | 150 |
概率 |
則張茗預(yù)期獲得的話費(fèi)為多少元?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為建設(shè)美麗新農(nóng)村,某村對(duì)本村布局重新進(jìn)行了規(guī)劃,其平面規(guī)劃圖如圖所示,其中平行四邊形區(qū)域?yàn)樯顓^(qū),為橫穿村莊的一條道路,區(qū)域?yàn)樾蓍e公園,,,的外接圓直徑為.
(1)求道路的長(zhǎng);
(2)該村準(zhǔn)備沿休閑公園的邊界修建柵欄,以防村中的家畜破壞公園中的綠化,試求柵欄總長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,四邊形是邊長(zhǎng)為2的菱形,,.
(1)證明:平面平面;
(2)當(dāng)直線與平面所成的角為30°時(shí),求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
(1)求的軌跡
(2)過(guò)軌跡上任意一點(diǎn)作圓的切線,設(shè)直線的斜率分別是,試問(wèn)在三個(gè)斜率都存在且不為0的條件下, 是否是定值,請(qǐng)說(shuō)明理由,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中從事技術(shù)和運(yùn)營(yíng)崗位的人數(shù)占總?cè)藬?shù)的三成以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的20%
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面 平面,,, .
(1)證明
(2)設(shè)點(diǎn)在線段上,且,若的面積為,求四棱錐的體積
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com