(本小題共14分)
已知函數(shù)
(Ⅰ)試用含有a的式子表示b,并求的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)的最大值為,試證明不等式:
(Ⅲ)首先閱讀材料:對(duì)于函數(shù)圖像上的任意兩點(diǎn),如果在函數(shù)圖象上存在點(diǎn),使得在點(diǎn)M處的切線(xiàn),則稱(chēng)AB存在“相依切線(xiàn)”特別地,當(dāng)時(shí),則稱(chēng)AB存在“中值相依切線(xiàn)”。請(qǐng)問(wèn)在函數(shù)的圖象上是否存在兩點(diǎn),使得AB存在“中值相依切線(xiàn)”?若存在,求出一組A、B的坐標(biāo);若不存在,說(shuō)明理由.
解:(1),
所以,的增區(qū)間為,減區(qū)間為。
(2),即證
令,則
所以,是上的減函數(shù),,即,證畢。
(3)假設(shè)函數(shù)的圖象上存在兩點(diǎn),使得存在“中值相依切線(xiàn)”,則
,
又得
,
令,則,此式表示有大于1的實(shí)數(shù)根。
令,則,所以是的增函數(shù)。
所以與有大于1的實(shí)數(shù)根相矛盾,所以函數(shù)的圖象上不存在兩點(diǎn),使得存在“中值相依切線(xiàn)”。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題共14分)
數(shù)列的前n項(xiàng)和為,點(diǎn)在直線(xiàn)
上.
(I)求證:數(shù)列是等差數(shù)列;
(II)若數(shù)列滿(mǎn)足,求數(shù)列的前n項(xiàng)和
(III)設(shè),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題共14分)
如圖,四棱錐的底面是正方形,,點(diǎn)E在棱PB上。
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線(xiàn)的離心率為,右準(zhǔn)線(xiàn)方程為
(Ⅰ)求雙曲線(xiàn)的方程;
(Ⅱ)設(shè)直線(xiàn)是圓上動(dòng)點(diǎn)處的切線(xiàn),與雙曲線(xiàn)交
于不同的兩點(diǎn),證明的大小為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆度廣東省高二上學(xué)期11月月考理科數(shù)學(xué)試卷 題型:解答題
(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EFPB交PB于點(diǎn)F
⑴求證:PA//平面EDB
⑵求證:PB平面EFD
⑶求二面角C-PB-D的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年北京市崇文區(qū)高三下學(xué)期二模數(shù)學(xué)(文)試題 題型:解答題
(本小題共14分)
正方體的棱長(zhǎng)為,是與的交點(diǎn),為的中點(diǎn).
(Ⅰ)求證:直線(xiàn)∥平面;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com