(本小題滿分14分)

      

若一個數(shù)列各項取倒數(shù)后按原來的順序構成等差數(shù)列,則稱這個數(shù)列為調和數(shù)列.已知數(shù)列是調和數(shù)列,對于各項都是正數(shù)的數(shù)列,滿足

(Ⅰ)求證:數(shù)列是等比數(shù)列;

(Ⅱ)把數(shù)列中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,

時,求第行各數(shù)的和;

(Ⅲ)對于(Ⅱ)中的數(shù)列,若數(shù)列滿足

,求證:數(shù)列為等差數(shù)列.

(本小題滿分14分)

解:(Ⅰ)證明:因為,且數(shù)列中各項都是正數(shù),

所以

,                ①

因為數(shù)列是調和數(shù)列,故,

所以.                                  ②

由①得

代入②式得,即.

. 所以數(shù)列是等比數(shù)列.    ………………………………5分

(Ⅱ)設的公比為,則,即.由于,故

于是

注意到第行共有個數(shù),

所以三角形數(shù)表中第1行至第行共含有個數(shù).

因此第行第1個數(shù)是數(shù)列中的第項.

故第行第1個數(shù)是,

所以第行各數(shù)的和為.  …………10分

(Ⅲ)由 ,得,

,所以,         ①

                         ②

②—① 得

,   ③

,   ④

④-③ 得 ,即.

所以為等差數(shù)列.           ………………………………………………14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設AB是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案