20.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(3,-2),若$\overrightarrow{a}$∥$\overrightarrow$,則x=( 。
A.-3B.$-\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

分析 由向量共線可得-2x=1×3,解之即可.

解答 解:向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(3,-2),$\overrightarrow{a}$∥$\overrightarrow$,
則-2x=1×3,
解得x=-$\frac{3}{2}$,
故選:B

點(diǎn)評 本題考查向量共線的充要條件,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合P={x|x2-2x-8>0},Q={x|x≥a},P∪Q=R,則a的取值范圍是( 。
A.(-2,+∞)B.(4,+∞)C.(-∞,-2]D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知e為自然對數(shù)的底,a=($\frac{2}{e}$)-0.3,b=($\frac{e}{2}$)0.4,c=log${\;}_{\frac{2}{e}}$e,則a,b,c的大小關(guān)系是( 。
A.c<b<aB.c<a<bC.b<a<cD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.現(xiàn)有編號為①、②、③的三個(gè)三棱錐(底面水平放置),俯視圖分別為圖1、圖2、圖3,則至少存在一個(gè)側(cè)面與此底面互相垂直的三棱錐的所有編號是( 。
A.B.①②C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知?jiǎng)狱c(diǎn)M到點(diǎn)N(1,0)和直線l:x=-1的距離相等.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡E的方程;
(Ⅱ)已知不與l垂直的直線l'與曲線E有唯一公共點(diǎn)A,且與直線l的交點(diǎn)為P,以AP為直徑作圓C.判斷點(diǎn)N和圓C的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在log23,2-3,cosπ這三個(gè)數(shù)中最大的數(shù)是log23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,PC⊥平面ABCD,點(diǎn)E在棱PA上.
(Ⅰ)求證:直線BD⊥平面PAC;
(Ⅱ)若PC∥平面BDE,求證:AE=EP;
(Ⅲ)是否存在點(diǎn)E,使得四面體A-BDE的體積等于四面體P-BDC的體積的$\frac{1}{3}$?若存在,求出$\frac{PE}{PA}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B有三個(gè)元素,則實(shí)數(shù)m的取值范圍是( 。
A.[3,6)B.[1,2)C.[2,4)D.(2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.17世紀(jì)日本數(shù)學(xué)家們對這個(gè)數(shù)學(xué)關(guān)于體積方法的問題還不了解,他們將體積公式“V=kD3”中的常數(shù)k稱為“立圓術(shù)”或“玉積率”,創(chuàng)用了求“玉積率”的獨(dú)特方法“會(huì)玉術(shù)”,其中,D為直徑,類似地,對于等邊圓柱(軸截面是正方形的圓柱叫做等邊圓柱)、正方體也有類似的體積公式V=kD3,其中,在等邊圓柱中,D表示底面圓的直徑;在正方體中,D表示棱長,假設(shè)運(yùn)用此“會(huì)玉術(shù)”,求得的球、等邊圓柱、正方體的“玉積率”分別為k1,k2,k3=( 。
A.$\frac{π}{4}$:$\frac{π}{6}$:1B.$\frac{π}{6}$:$\frac{π}{4}$:2C.1:3:$\frac{12}{π}$D.1:$\frac{3}{2}$:$\frac{6}{π}$

查看答案和解析>>

同步練習(xí)冊答案