在平面α內(nèi)有一個正三角形ABC,以BC邊為軸把△ABC旋轉(zhuǎn)θ角,θ∈(0,),得到,當θ=________時,在平面α內(nèi)的射影是直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC和△DBC是兩個有公共斜邊的直角三角形,并且AB=AD=AC=2a,CD=
6
a

(1)若P是AC邊上的一點,當△PDB的面積最小時,求二面角B-PD-C的正切值;
(2)在(1)的條件下,求點C到平面PBD的距離;
(3)能否找到一個球,使A,B,C,D都在該球面上,若不能,請說明理由;若能,求該球的內(nèi)接正三棱柱的側(cè)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一個質(zhì)地均勻的正方體(六個面上分別標有數(shù)字0,1,2,3,4,5)和一個正四面體(四個面分別標有數(shù)字1,2,3,4)同時拋擲1次,規(guī)定“正方體向上的面上的數(shù)字為a,正四面體的三個側(cè)面上的數(shù)字之和為b”.設(shè)復(fù)數(shù)為z=a+bi.
(1)若集合A={z|z為純虛數(shù)},用列舉法表示集合A;
(2)求事件“復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(a,b)滿足a2+(b-6)2≤9”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)將一個質(zhì)地均勻的正方體(六個面上分別標有數(shù)字0,1,2,3,4,5)和一個正四面體(四個面分別標有數(shù)字1,2,3,4)同時拋擲1次,規(guī)定“正方體向上的面上的數(shù)字為a,正四面體的三個側(cè)面上的數(shù)字之和為b”。設(shè)復(fù)數(shù)為   (1)若集合,用列舉法表示集合A;(2)求事件“復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點”的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三5月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

本題有(1).(2).(3)三個選做題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.

(1)(本小題滿分7分)選修4-2:矩陣與變換選做題

已知矩陣A=有一個屬于特征值1的特征向量.  

(Ⅰ) 求矩陣A;

(Ⅱ) 矩陣B=,點O(0,0),M(2,-1),N(0,2),求在矩陣AB的對應(yīng)變換作用下所得到的的面積. 

(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程選做題

在直角坐標平面內(nèi),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知曲線的參數(shù)方程為,曲線的極坐標方程為

(Ⅰ)將曲線的參數(shù)方程化為普通方程;(Ⅱ)判斷曲線與曲線的交點個數(shù),并說明理由.

(3)(本小題滿分7分)選修4-5:不等式選講選做題

已知函數(shù),不等式上恒成立.

(Ⅰ)求的取值范圍;

(Ⅱ)記的最大值為,若正實數(shù)滿足,求的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆北京市高二下學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

將一個質(zhì)地均勻的正方體(六個面上分別標有數(shù)字0,1,2,3,4,5)和一個正四面體(四個面分別標有數(shù)字1,2,3,4)同時拋擲一次,規(guī)定“正方體向上的面上的數(shù)字為a,正四面體的三個側(cè)面上的數(shù)字之和為b”。設(shè)復(fù)數(shù)

(1)若集合{為純虛數(shù)},用列舉法表示集合A;

(2)求事件“復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(a,b)滿足”的概率。

 

查看答案和解析>>

同步練習(xí)冊答案