如圖:圓錐形的杯子上面放著半圓形的冰淇淋,當(dāng)冰淇淋融化能否外溢_________.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

的邊長為4,CD是AB邊上的高,E、F分別是AC和BC的中點(diǎn),現(xiàn)將沿CD翻折成直二面角,(1)求證:;(2)若點(diǎn)P在線段BC上,且BC=3BP,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知在四棱錐P-ABCD中,底面ABCD是邊長為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分別是PAPB、BC的中點(diǎn).
(I)求證:EF平面PAD
(II)求平面EFG與平面ABCD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分).如圖所示,四棱錐PABCD的底面積ABCD是邊長為1的菱形,
BCD=60°,ECD的中點(diǎn),PA⊥底面積ABCD,PA.
(Ⅰ)證明:平面PBE⊥平面PAB;
(Ⅱ) 過PC中點(diǎn)F作FH//平面PBD, FH交平面ABCD 于H點(diǎn),判定H點(diǎn)位于平面ABCD的那個(gè)具體位置?(無須證明)
(Ⅲ)求二面角ABEP的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)如圖,在棱長為ɑ的正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點(diǎn).
(1)求證:平面A B1D1∥平面EFG;
(2)求證:平面AA1C⊥面EFG .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,正三棱柱所有棱長都是,是棱的中點(diǎn),是棱的中點(diǎn),于點(diǎn)
(1)求證:
(2)求二面角的大。ㄓ梅慈呛瘮(shù)表示);
(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若長方體公共頂點(diǎn)的三個(gè)面的面積分別為,則對(duì)角線長為(    )
A.B.C.6D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

三棱錐A-BCD中,BAAD,BCCD,且AB=1,AD=,則此三棱錐外接球的體積為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AB=1,
(1)證明:AB⊥A1C
(2)求二面角A-A1C-B的大小

查看答案和解析>>

同步練習(xí)冊答案