已知在平面直角坐標系xoy中,O(0,0),A(1,-2),B(1,1),C(2,-1)動點M滿足條件
-2≤
OM
OA
≤2
1≤
OM
OB
≤2
,則
OM
OC
的最大值為
 
分析:利用向量的坐標求法求出各個向量的坐標,利用向量的數(shù)量積公式求出各個數(shù)量積代入已知不等式得到M的坐標滿足的不等式,將
OM
OC
的值用不等式組中的式子表示,利用不等式的性質求出范圍.
解答:解:設M(x,y)則
OM
=(x,y),
OA
=(1,-2),
OB
=(1,1)
,
OC
=(2,-1)

-2≤
OM
OA
≤2
1≤
OM
OB
≤2

-2≤x-2y≤2
1≤x+y≤2

OM
OC
=2x-y=(x-2y)+(x+y)

-1≤
OM
OC
≤4

故答案為4
點評:本題考查向量的坐標形式的數(shù)量積公式、不等式的性質.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

選修4-4:坐標系與參數(shù)方程
已知在平面直角坐標系xOy內,點P(x,y)在曲線C:
x=1+cosθ
y=sinθ
為參數(shù),θ∈R)上運動.以Ox為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+
π
4
)=0

(Ⅰ)寫出曲線C的標準方程和直線l的直角坐標方程;
(Ⅱ)若直線l與曲線C相交于A、B兩點,點M在曲線C上移動,試求△ABM面積的最大值,并求此時M點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為F(-
3
,0)
,且過點D(2,0).
(1)求該橢圓的標準方程;
(2)設點A(1,
1
2
)
,若P是橢圓上的動點,求線段PA的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(坐標系與參數(shù)方程選做題)已知在平面直角坐標系xoy中,圓C的參數(shù)方程為
x=
3
+3cosθ
y=1+3sinθ
,(θ為參數(shù)),以ox為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+
π
6
)
=0,則圓C截直線l所得的弦長為
4
2
4
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在平面直角坐標系中,O(0,0),A(1,-2),B(1,1),C(2,-1),動點M(x,y)滿足條件
-2≤
OM
OA
≤2
1≤
OM
OB
≤2
,則z=
OM
OC
的最大值為(  )
A、-1B、0C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在平面直角坐標系xOy中的一個橢圓,它的中心在原點,左焦點為F(-
3
,0)
,右頂點為D(2,0),設點A(1,
1
2
)

(Ⅰ)求該橢圓的標準方程;
(Ⅱ)若P是橢圓上的動點,求線段PA中點M的軌跡方程;
(Ⅲ)是否存在直線l,滿足l過原點O并且交橢圓于點B、C,使得△ABC面積為1?如果存在,寫出l的方程;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案