已知:(a0a1)

(1)f(x)定義域;

(2)判斷f(x)的奇偶性并予以證明;

(3)求使f(x)0x的取值范圍.

答案:略
解析:

解:(1)由對(duì)數(shù)函數(shù)的定義知:,∴-1x1,

f(x)的定義域?yàn)?/FONT>(1,1)

(2),

f(x)是奇函數(shù).

(3)當(dāng)a1時(shí),等價(jià)于

當(dāng)0a1時(shí),等價(jià)于

a1時(shí),xÎ(0,1)時(shí),f(x)0

0a1時(shí),xÎ(10)時(shí),f(x)0


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a>0且a≠1,函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值比最小值大
12
,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=
1+i
1-i
+(1-i)2(i
是虛數(shù)單位),b是z的虛部,且函數(shù)f(x)=loga(2x2-bx)(a>0且a≠1)在區(qū)間(0,
1
2
)內(nèi)f(x)>0
恒成立,則函數(shù)f(x)的遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=kx,(k≠0)且滿(mǎn)足f(x+1)•f(x)=x2+x,函數(shù)g(x)=ax,(a>0且a≠1).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)f(x)為R上的增函數(shù),h(x)=
f(x)+1
f(x)-1
(f(x)≠1)
,問(wèn)是否存在實(shí)數(shù)m使得h(x)的定義域和值域都為[m,m+1]?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)已知關(guān)于x的方程g(2x+1)=f(x+1)•f(x)恰有一實(shí)數(shù)解為x0,且x0∈(
1
4
,
1
2
)
求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知常數(shù)a>0且a≠1,變數(shù)x、y滿(mǎn)足 3logxa+logax-logxy=3
(1)若x=at(t≠0),試以a、t表示y.
(2)若t∈{t|t2-4t+3≤0}時(shí),y有最小值8,求a和x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知常數(shù)a>0且a≠1,則函數(shù)f(x)=ax-1-1恒過(guò)定點(diǎn)( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案