3.已知直線l:ax+y+b=0與圓O:x2+y2=4相交于A、B兩點,$M({\sqrt{3},-1})$,且$\overrightarrow{OA}+\overrightarrow{OB}=\frac{2}{3}\overrightarrow{OM}$,則$\sqrt{3}ab$等于( 。
A.-3B.-4C.3D.4

分析 由題意,可得直線l與直線OM垂直,且圓心O到直線l的距離為$\frac{2}{3}$,建立方程,求出a,b,即可得出結(jié)論.

解答 解:∵$\overrightarrow{OA}+\overrightarrow{OB}=\frac{2}{3}\overrightarrow{OM}$,∴直線l與直線OM垂直,且圓心O到直線l的距離為$\frac{2}{3}$,
即$\left\{\begin{array}{l}a=-\sqrt{3}\\ \frac{{\sqrt{{a^2}+1}}}=\frac{2}{3}\end{array}\right.$,解得$\left\{\begin{array}{l}a=-\sqrt{3}\\ b=\frac{4}{3}.\end{array}\right.$,則$\sqrt{3}ab=-4$.
故選B.

點評 本題考查直線與圓的位置關(guān)系,考查向量知識的運用,體現(xiàn)方程思想,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.為大力提倡“厲行節(jié)約,反對浪費”,某市通過隨機詢問100名性別不同的居民是否做到“光盤”行動,得到如下列聯(lián)表及附表:
經(jīng)計算:${X^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}≈3.03$
做不到“光盤”行動做到“光盤”行動
4510
3015
P(X2≥x00.100.050.025
x02.7063.8415.024
參照附表,得到的正確結(jié)論是(  )
A.在犯錯誤的概率不超過1%的前提下,認為“該市民能否做到‘光盤’行動與性別有關(guān)”
B.在犯錯誤的概率不超過1%的前提下,認為“該市民能否做到‘光盤’行動與性別無關(guān)”
C.有90%以上的把握認為“該市民能否做到‘光盤’行動與性別有關(guān)”
D.有90%以上的把握認為“該市民能否做到‘光盤’行動與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=x2-2x,g(x)=ax-1,若?x1∈[-1,2],?x2∈[-1,2],使得f(x1)=g(x2),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知定點F1(-2,0)與F2(2,0),動點M滿足|MF1|-|MF2|=4,則點M的軌跡方程是( 。
A.$\frac{x^2}{16}-\frac{y^2}{12}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=0(x≥2)$C.y=0(|x|≥2)D.y=0(x≥2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知拋物線C:y2=2px(p>0)的焦點坐標為F($\frac{1}{2}$,0).
(Ⅰ)求p的值;
(Ⅱ)已知斜率為2的直線l與拋物線C相交于與原點不重合的兩點A,B,且OA⊥OB,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知雙曲線$\frac{x^2}{3}-\frac{y^2}{m}=1({m>0})$的離心率為e,經(jīng)過第一、三象限的漸近線的斜率為k,且e≥$\sqrt{2}$k.
(1)求m的取值范圍;
(2)設(shè)條件p:e≥$\sqrt{2}$k;條件q:m2-(2a+2)m+a(a+2)≤0.若p是q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知定義域為R的函數(shù) f (x)的導函數(shù)為f'(x),且滿足f'(x)-2f (x)>4,若 f (0)=-1,則不等式f(x)+2>e2x的解集為( 。
A.(0,+∞)??B.(-1,+∞)??C.(-∞,0)?D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若角α的終邊經(jīng)過點P(4,-3),則sinα=( 。
A.±$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.±$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.利用獨立性檢驗考察兩個分類變量X與Y是否有關(guān)系時,若K2的觀測值k=6.132,則有97.5%的把握認為“X與Y有關(guān)系”.
P(K2≥k00.050.0250.0100.005
k03.8415.0246.6357.879

查看答案和解析>>

同步練習冊答案