19.(1)解方程:log2(4x+4)=x+log2(2x+1-3)
(2)解不等式:log2(log3(log4x))<0.

分析 (1)由$x=lo{g}_{2}{2}^{x}$,log2(4x+4)=x+log2(2x+1-3),可得4x+4=2x(2x+1-3),化簡解出即可得出.
(2)由log2(log3(log4x))<0,可得x>0,log3(log4x)<1,利用對數(shù)的運(yùn)算性質(zhì)及其單調(diào)性進(jìn)一步化簡即可得出.

解答 解:(1)∵$x=lo{g}_{2}{2}^{x}$,log2(4x+4)=x+log2(2x+1-3),∴4x+4=2x(2x+1-3),∴(2x2-3•2x-4=0,2x>0,
解得2x=4,解得x=2,經(jīng)過檢驗(yàn)滿足條件.
∴原方程的解為:x=2.
(2)∵log2(log3(log4x))<0,
∴x>0,log3(log4x)<1,
∴x>0,log4x<3,
∴x>0,x<43
因此0<x<64.

點(diǎn)評 本題考查了對數(shù)的運(yùn)算性質(zhì)及其單調(diào)性、方程的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點(diǎn),過點(diǎn)D1、E、F的截面將正方體分割成兩個部分,記這兩個部分的體積分別為V1、V2(V1<V2),則V1:V2=(  )
A.$\frac{1}{3}$B.$\frac{3}{5}$C.$\frac{25}{47}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$,則z=$\frac{y+1}{x+1}$的范圍是(  )
A.$[\frac{1}{3},2]$B.$[-\frac{1}{2},\frac{1}{2}]$C.$[\frac{1}{2},\frac{3}{2}]$D.$[\frac{3}{2},\frac{5}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.a(chǎn),b,c,m,n,表示直線,α,β表示平面,給出下列四個命題:
①若a∥α,b∥α,則a∥b;
②若α∥β,β∥γ,m⊥α,則m⊥γ;
③若a⊥c,b⊥c,則a∥b;
④若α⊥γ,β⊥γ,則α∥β
⑤若m⊥α,n∥α,則m⊥n;
其中正確命題的有②⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=a2-x-8(實(shí)數(shù)a>0,a≠1).
(1)判斷函數(shù)f(x)的奇偶性并證明;
(2)若x∈[1,+∞),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.$tanϕ=-\sqrt{3}$,ϕ為第四象限角,則cosϕ=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某研究所計(jì)劃利用“神七”宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載若干件新產(chǎn)品A、B,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:
每件產(chǎn)品A每件產(chǎn)品B
研制成本、搭載
費(fèi)用之和(萬元)
2030計(jì)劃最大資金額
300萬元
產(chǎn)品重量(千克)105最大搭載重量110千克
預(yù)計(jì)收益(萬元)8060
如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.對于原命題:“已知a,b,c∈R,若a>b,則ac2>bc2”,以及它的逆命題、否命題、逆否命題,在這4個命題中,真命題的個數(shù)為( 。
A.0個B.1個C.2個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出.某市政府為了節(jié)約生活用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個居民月用水量的標(biāo)準(zhǔn),為了確定一個較為合理的標(biāo)準(zhǔn),必須先了解全市居民日常用水量的分布情況.現(xiàn)采用抽樣調(diào)查的方式,獲得了n位居民某年的月均用水量(單位:),樣本統(tǒng)計(jì)結(jié)果如圖表:
分組頻數(shù)頻率
[0,1)a
[1,2)0.19
[2,3)50b
[3,4)0.23
[4,5)0.18
[5,6)5
(I)分別求出n,a,b的值;
(II)若從樣本中月均用水量在[5,6](單位:)的5位居民中任選2人作進(jìn)一步的調(diào)查研究,求月均用水量最多的居民被選中的概率(5位居民的月均用水量均不相等).

查看答案和解析>>

同步練習(xí)冊答案