10.點M(x,y,z)是空間直角坐標系Oxyz中的一點,則與點M關(guān)于y軸對稱的點的坐標是(-x,y,-z).

分析 先根據(jù)空間直角坐標系對稱點的特征,點(x,y,z)關(guān)于y軸的對稱點的坐標為只須將橫坐標、豎坐標變成原來的相反數(shù)即可,即可得對稱點的坐標.

解答 解:∵在空間直角坐標系中,
點(x,y,z)關(guān)于z軸的對稱點的坐標為:(-x,y,-z),
故答案為:(-x,y,-z)

點評 本小題主要考查空間直角坐標系、空間直角坐標系中點的坐標特征等基礎知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.執(zhí)行圖中的程序,如果輸出的結(jié)果是4,那么輸入的只可能是( 。
A.-4B.2C.±2或者-4D.2或者-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)f(x)=2sinx(x∈[-π,π])的圖象大致為    ( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知拋物線C:y2=2px(p>0)的焦點F(1,0),O為坐標原點,A,B是拋物線C異于O的兩點.
(1)求拋物線C的方程;
(2)若直線OA,OB的斜率之積為-$\frac{1}{3}$,求證:直線AB過x軸上一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(Ⅰ) 計算:2${\;}^{-lo{g}_{2}4}$-($\frac{8}{27}$)${\;}^{-\frac{2}{3}}$+lg$\frac{1}{100}$+($\sqrt{2}$-1)lg1+(lg5)2+lg2•lg50
(Ⅱ)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求$\frac{{x}^{2}+{x}^{-2}-2}{x+{x}^{-1}-3}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.荊州市某重點學校為了了解高一年級學生周末雙休日在家活動情況,打算從高一年級1256名學生中抽取50名進行抽查,若采用下面的方法選。合扔煤唵坞S機抽樣從1256人中剔除6人,剩下1250人再按系統(tǒng)抽樣的方法進行,則每人入選的機會( 。
A.不全相等B.均不相等C.都相等D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若函數(shù)y=x2+(2a-1)x+1在區(qū)間(2,+∞)上是增函數(shù),則實數(shù)a的取值范圍是(  )
A.[-$\frac{3}{2}$,+∞)B.(-∞,-$\frac{3}{2}$]C.[$\frac{3}{2}$,+∞)D.(-∞,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若不等式組$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≤2}\\{y≥0}\\{x+y≤a}\end{array}\right.$表示的平面區(qū)域是一個三角形,則a的取值范圍是( 。
A.0<a≤1或a≥$\frac{4}{3}$B.0<a≤1C.0≤a<1或a>$\frac{4}{3}$D.0<a<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖所示,正四棱錐P-ABCD中,O為底面正方形的中心,側(cè)棱PA與底面ABCD所成的角的正切值為$\frac{\sqrt{6}}{2}$.
(1)求側(cè)面PAD與底面ABCD所成的二面角的大小;
(2)若E是PB的中點,求異面直線PD與AE所成角的正切值;
(3)問在棱AD上是否存在一點F,使EF⊥側(cè)面PBC,若存在,試確定點F的位置;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案