【題目】已知函數(shù)f(x)= ,直線y= x為曲線y=f(x)的切線(e為自然對數(shù)的底數(shù)).
(1)求實數(shù)a的值;
(2)用min{m,n}表示m,n中的最小值,設函數(shù)g(x)=min{f(x),x﹣ }(x>0),若函數(shù)h(x)=g(x)﹣cx2為增函數(shù),求實數(shù)c的取值范圍.

【答案】
(1)解:函數(shù)f(x)= 的導數(shù)為f′(x)=

設切點為(m,n),即有n= ,n= m,

可得ame=em,①

由直線y= x為曲線y=f(x)的切線,可得

= ,②

由①②解得m=1,a=1;


(2)解:函數(shù)g(x)=min{f(x),x﹣ }(x>0),

由f(x)= 的導數(shù)為f′(x)= ,

當0<x<2時,f(x)遞增,x>2時,f(x)遞減.

對x﹣ 在x>0遞增,設y=f(x)和y=x﹣ 的交點為(x0,y0),

由f(1)﹣(1﹣1)= >0,f(2)﹣(2﹣ )= <0,即有1<x0<2,

當0<x<x0時,g(x)=x﹣

h(x)=g(x)﹣cx2=x﹣ ﹣cx2,h′(x)=1+ ﹣2cx,

由題意可得h′(x)≥0在0<x<x0時恒成立,

即有2c≤ + ,由y= + 在(0,x0)遞減,

可得2c≤ +

當x≥x0時,g(x)= ,

h(x)=g(x)﹣cx2= ﹣cx2,h′(x)= ﹣2cx,

由題意可得h′(x)≥0在x≥x0時恒成立,

即有2c≤ ,由y= ,可得y′=

可得函數(shù)y在(3,+∞)遞增;在(x0,3)遞減,

即有x=3處取得極小值,且為最小值﹣

可得2c≤﹣ ②,

由①②可得2c≤﹣ ,解得c≤﹣


【解析】(1)求出f(x)的導數(shù),設出切點(m,n),可得切線的斜率,由切線方程可得a,m的方程,解方程可得a=1;(2)y=f(x)和y=x﹣ 的交點為(x0 , y0),分別畫出y=f(x)和y=x﹣ 在x>0的圖象,可得1<x0<2,再由新定義求得最小值,求得h(x)的解析式,由題意可得h′(x)≥0在0<x<x0時恒成立,運用參數(shù)分離和函數(shù)的單調(diào)性,即可得到所求c的范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐E-ABCD中,四邊形ABCD是平行四邊形,△BCE是等邊三角形,△ABE是等腰直角三角形,∠BAE=90°,且AC=BC.

(1)證明:平面ABE⊥平面BCE;

(2)求二面角A-DE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場在國慶黃金周的促銷活動中,對10月1日9時至14時的銷售額進行統(tǒng)計,其頻率分布直方圖如圖所示.已知9時至10時的銷售額為3萬元,則11時至12時的銷售額為萬元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,四點、、、中恰有三點在橢圓上。

(1)求的方程:

(2)橢圓上是否存在不同的兩點、關于直線對稱?若存在,請求出直線的方程,若不存在,請說明理由;

(3)設直線不經(jīng)過點且與相交于、兩點,若直線與直線的斜率的和為1,求證:過定點。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的直角坐標方程為,曲線的方程為,現(xiàn)建立以為極點軸的正半軸為極軸的極坐標系

(1)寫出直線極坐標方程,曲線的參數(shù)方程;

(2)過點平行于直線的直線與曲線交于、兩點,若求點軌跡的直角坐標方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(點均在第一象限),且直線的斜率成等比數(shù)列,證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公園準備在一圓形水池里設置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,A,B兩點為噴泉,圓心O為AB的中點,其中OA=OB=a米,半徑OC=10米,市民可位于水池邊緣任意一點C處觀賞.

(1)若當∠OBC= 時,sin∠BCO= ,求此時a的值;
(2)設y=CA2+CB2 , 且CA2+CB2≤232.
(i)試將y表示為a的函數(shù),并求出a的取值范圍;
(ii)若同時要求市民在水池邊緣任意一點C處觀賞噴泉時,觀賞角度∠ACB的最大值不小于 ,試求A,B兩處噴泉間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N≡n(mod m),例如10≡4(mod 6).下面程序框圖的算法源于我國古代聞名中外的(中國剩余定理),執(zhí)行該程序框圖,則輸出的n等于(

A.17
B.16
C.15
D.13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,2asin A=(2b+c)sin B+(2c+b)sin C.

且sin B+sin C=1,則△ABC是(  )

A. 等腰鈍角三角形 B. 等腰直角三角形 C. 鈍角三角形 D. 直角三角形

查看答案和解析>>

同步練習冊答案