2.若x≥0,則y=x+$\frac{4}{x+1}$的取值范圍為[3,+∞).

分析 變形利用基本不等式的性質(zhì)即可得出.

解答 解:∵x≥0,則y=x+$\frac{4}{x+1}$=x+1+$\frac{4}{x+1}$-1≥2$\sqrt{(x+1)•\frac{4}{x+1}}$-1=3,當且僅當x=1時取等號.
∴y=x+$\frac{4}{x+1}$的取值范圍為[3,+∞).
故答案為:[3,+∞).

點評 本題考查了基本不等式的性質(zhì),考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知命題p:x2-5x-6≤0;命題q:x2-6x+9-m2≤0(m>0),若¬p是¬q的充分不必要條件,則實數(shù)m的取值范圍是(0,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設函數(shù)f(x+1)的定義域為[-1,0],則函數(shù)f($\sqrt{x}$-2)的定義域為[4,9].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,某旅游區(qū)擬建一主題游樂園,該游樂區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂區(qū),四邊形區(qū)域為BCDE為休閑游樂區(qū),AB、BC,CD,DE,EA,BE為游樂園的主要道路(不考慮寬度).∠BCD=∠CDE=120°,∠BAE=60°,DE=3BC=3CD=3km.
(I)求道路BE的長度;
(Ⅱ)求道路AB,AE長度之和的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{({\frac{1}{3}})^x}{,_{\;}}_{\;}x≤1\\{log_{\frac{1}{2}}}x{,_{\;}}x>1\end{array}\right.$,則f(f(${\sqrt{2}}$))=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設數(shù)列{an}的前n項和Sn滿足Sn=2an-a1,且a1,a3+1,a4成等差數(shù)列.
(I)求數(shù)列{an}的通項公式;
(II)若數(shù)列{an}滿足an•bn=an2-1,求數(shù)列{bn}的前幾項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若c=2a,bsinB-asinA=$\frac{1}{2}$asinC,則cosB為( 。
A.$\frac{{\sqrt{7}}}{4}$B.$\frac{3}{4}$C.$\frac{{\sqrt{7}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.不等式$\frac{ax+1}{x+b}$>1的解集為(-∞,-1)∪(3,+∞),則不等式x2+ax-2b<0的解集為( 。
A.(-3,-2)B.$(-\frac{1}{2},-\frac{1}{3})$C.(-∞,-3)∪(-2,+∞)D.$(-∞,-\frac{1}{2})∪(-\frac{1}{3},+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an}中,a1=t(t≠-1),且an+1=$\left\{\begin{array}{l}{2{a}_{n}+n,n為奇數(shù)}\\{{a}_{n}-\frac{1}{2}n,n為偶數(shù)}\end{array}\right.$.
(1)證明:數(shù)列{a2n+1}是等比數(shù)列;
(2)若數(shù)列{an}的前2n項和為S2n
①當t=1時,求S2n;
②若{S2n}單調(diào)遞增,求t的取值范圍.

查看答案和解析>>

同步練習冊答案