如圖,在海島A上有一座海拔1千米的山,山頂設(shè)有一個(gè)觀察站P,上午11時(shí),測(cè)得一輪船在島北偏東30°,俯角為30°的B處,到11時(shí)10分又測(cè)得該船在島北偏西60°,俯角為60°的C處.
(1)求船的航行速度是每小時(shí)多少千米?
(2)又經(jīng)過(guò)一段時(shí)間后,船到達(dá)海島的正西方向的D處,問(wèn)此時(shí)船距島A有多遠(yuǎn)?
 (1)在Rt△PAB中,∠APB=60°,PA=1,
∴AB=.
在Rt△PAC中,∠APC=30°,
∴AC=.
在△ACB中,∠CAB=30°+60°=90°,
∴BC=
==.
則船的航行速度為÷=2(千米/時(shí)).
(2)在△ACD中,∠DAC=90°-60°=30°,sin∠DCA
=sin(180°-∠ACB)
=sin∠ACB===,
sin∠CDA=sin(∠ACB-30°)
=sin∠ACB·cos30°
-cos∠ACB·sin30°
=·
-·
=.
由正弦定理得
=.
∴AD=
==.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知⊿ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且b2+c2=a2+bc,求:(1) 2sinBcosC-sin(B-C)的值;
(2)若a=2,求⊿ABC周長(zhǎng)的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,,cosC是方程的一個(gè)根,求△ABC周長(zhǎng)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在△中,,則角等于(    ) 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
△ABC中,角A、B、C的對(duì)邊分別為a、b、c,
,
(1)求角A的大小;
(2)若,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,B地在A地的正東方向4 km處,C地在B地的北
偏東30°方向2 km處,河流的沿岸PQ(曲線(xiàn))上任意一點(diǎn)
到A的距離比到B的距離遠(yuǎn)2 km..現(xiàn)要在曲線(xiàn)PQ上選一處
M建一座碼頭,向B、C兩地轉(zhuǎn)運(yùn)貨物.那么這兩條公路MB、
MC的路程之和最短是              km

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(滿(mǎn)分6分)在銳角中,的值等于    ,
取值范圍為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)△ABC的BC邊上的高AD=BC,a,b,c分別表示角A,B,C對(duì)應(yīng)的三邊,則的取值范圍是       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

中,已知,,,則角(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案