16.運行如圖方框中的程序,若輸入的數(shù)字為-1,則輸出結(jié)果為( 。
A.Y=1B.Y=-1C.Y=-3D.Y=-5

分析 根據(jù)該程序的功能是計算并輸出分段函數(shù)y的值,代入求值即可.

解答 解:由已知中的程序語言知:該程序的功能是計算并輸出
y=$\left\{\begin{array}{l}{{x}^{2},x≥2}\\{2x-3,x<2}\end{array}\right.$的值,
∴當x=-1時,-1<2,
得:y=2×(-1)-3=-5.
故選:D.

點評 本題考查了解決程序框圖的選擇結(jié)構(gòu),關鍵是判斷出輸入的值是否滿足判斷框中的條件,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.不等式x(x-2)≤0的解集是( 。
A.[0,2)B.(-∞,0)∪(2,+∞)C.(-∞,0]∪[2,+∞)D.[0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,四邊形ABCD內(nèi)接于⊙O,BA,CD的延長線相交于點E,EF∥DA,并與CB的延長線交于點F,F(xiàn)G切⊙O于G.
(1)求證:BE•EF=CE•BF;
(2)求證:FE=FG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.正四面體ABCD中,AB=CD=5,BC=AD=7,AC=BD=8,則外接球表面積為69π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在平面直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系.已知圓C的參數(shù)方程$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),直線l的極坐標方程為$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)=3
(1)求直線l的直角坐標方程和圓C的普通方程;
(2)求圓C上任一點P到直線l距離的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=3ax2-2(a-b+1)x-b,a,b∈R,x∈[-1,1].
(1)若a=1,b=4.試求函數(shù)f(x)的值域;
(2)記|f(x)|的最大值為M,對任意的|a|≤1,|b|≤1,求M的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖,⊙O的半徑為6,線段AB與⊙O相交于點C、D,OB與⊙O相交于點E,AC=4,CD=3,∠BOD=∠A,則BE=(  )
A.4B.5C.6D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=e1-xcosx,a∈R.
(Ⅰ)判斷函數(shù)f(x)在$(0,\frac{π}{2})$上的單調(diào)性;
(Ⅱ)證明:?x∈[-1,$\frac{1}{2}$],總有f(-x-1)+2f′(x)•cos(x+1)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.給出下列命題:
①函數(shù)f(x)=cosx,g(x)=|cosx|都是周期函數(shù),且最小正周期都為2π;
②函數(shù)y=sin|x|在區(qū)間(-$\frac{π}{2}$,0)上遞增;
③函數(shù)y=cos($\frac{3x}{4}$+$\frac{π}{2}$)是奇函數(shù);
④函數(shù)y=tan(2x-$\frac{π}{6}$)的定義域是{x|x∈R且x≠$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z};
⑤函數(shù)f(x)是偶函數(shù),且圖象關于直線x=2對稱,則4為f(x)的一個周期.
其中正確的命題是③④⑤(把正確命題的序號都填上)

查看答案和解析>>

同步練習冊答案