【題目】在正方體中,是棱的中點,是側(cè)面內(nèi)的動點,且平面,則與平面所成角的正切值構(gòu)成的集合是(

A.B.

C.D.

【答案】D

【解析】

為確定F點位置,先找過與平面平行且與平面相交的平面,分別取的中點,連接,可知平面平面,故F在線段上,可知線面角為,分析其正切值即可求出.

設(shè)平面與直線交于點,連接,則的中點.

分別取的中點,連接,則,

平面平面,

平面,同理可得平面.

是平面內(nèi)的兩條相交直線,

∴平面平面,且平面

可得直線平面,即點是線段上的動點.

設(shè)直線與平面所成角為,運動點并加以觀察,可得:

當點與點(或)重合時,與平面所成角等于,此時所成角達到最小值,滿足;

當點中點重合時,與平面所成角達到最大值,

此時,∴與平面所成角的正切值構(gòu)成的集合為,故選D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=cos),把函數(shù)fx)的圖象向左平移個單位得函數(shù)gx)的圖象,則下面結(jié)論正確的是(

A.函數(shù)gx)是偶函數(shù)

B.函數(shù)gx)的最小正周期是

C.函數(shù)gx)在區(qū)間,3π]上是增區(qū)數(shù)

D.函數(shù)gx)的圖象關(guān)于直線xπ對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,求不等式的解集;

2若關(guān)于x的不等式有實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若橢圓上有一動點,到橢圓的兩焦點的距離之和等于,到直線的最大距離為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若過點的直線與橢圓交于不同兩點、,為坐標原點)且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)是定義在上的奇函數(shù),當時,,則函數(shù)上的所有零點之和為(

A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓的右焦點,過點的直線交橢圓于兩點. 的中點,直線與直線交于點.

(Ⅰ)求征:;

(Ⅱ)求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (a是常數(shù)且a>0).對于下列命題:

①函數(shù)f(x)的最小值是-1;

②函數(shù)f(x)在R上是單調(diào)函數(shù);

③若f(x)>0在上恒成立,則a的取值范圍是a>1;

④對任意的x1<0,x2<0且x1x2,恒有

.

其中正確命題的序號是____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在(,0)∪(0,+∞)上的偶函數(shù),當x>0時,f(x)lnxax,若函數(shù)在定義域上有且僅有4個零點,則實數(shù)a的取值范圍是( )

A.(e,+∞)B.(0,)

C.(1)D.(,)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天干地支紀年法,源于中國,中國自古便有十天干與十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀年法是按順序以一個天干和一個地支相配,排列起來,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推,排列到“癸酉”后,天干回到“甲”重新開始,即“甲戌”,“乙亥”,之后地支回到“子”重新開始,即“丙子”,…,以此類推,已知2016年為丙申年,那么到改革開放100年時,即2078年為________

查看答案和解析>>

同步練習冊答案