13.已知數(shù)列{xn}滿足:x1=1,xn+1=-xn+$\frac{1}{2}$,則數(shù)列{xn}的前21項的和為( 。
A.5B.6C.11D.13

分析 利用分組求和、遞推關(guān)系即可得出.

解答 解:∵xn+1=-xn+$\frac{1}{2}$,∴xn+1+xn=$\frac{1}{2}$,
則數(shù)列{xn}的前21項的和=x1+(x2+x3)+…+(x20+x21)=1+10×$\frac{1}{2}$=6,
故選:B.

點評 本題考查了分組求和、遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a∈R,函數(shù)f(x)=log2($\frac{1}{x}$+a).
(1)當(dāng)a=5時,解不等式f(x)>0;
(2)若關(guān)于x的方程f(x)-log2[(a-4)x+2a-5]=0有且只有一解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在?ABCD中,$\overrightarrow{AB}$•$\overrightarrow{AC}$=8,$\overrightarrow{AB}$•$\overrightarrow{AD}$=-12,則|$\overrightarrow{AB}$|=2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.2016年里約奧運會和殘奧會吉祥物的名字于2015年12月14日揭曉,兩個吉祥物分別叫維尼修斯(Vinicius)和湯姆(Tom)(如圖),以此紀(jì)念巴薩諾瓦曲風(fēng)的著名音樂家Vinicius de Moraes和Tom Jobim.某商場抽獎箱中放置了除圖案外,其他無差別的8張卡片,其中有2張印有“維尼修斯(Vinicius)“圖案,n(2≤n≤4)張印有“湯姆(Tom)”圖案,其余卡片上印有”2016年里約奧運會“的圖案.
(1)若n=4,從抽獎箱中任意取一卡片,記下圖案后放回,連續(xù)抽取三次,求三次取出的卡片中,恰有兩張印有“2016年里約奧運會”圖案卡片的概率;
(2)從抽獎箱中任意抽取兩張卡片,如果兩張卡片圖案相同的概率是$\frac{2}{7}$.求n的值;
(3)①當(dāng)n=3時,隨機抽取一次,若規(guī)定取出印有“維尼修斯(Vinicius)”圖案的卡片獲得16元購物券,取出印有“湯姆(Tom)”圖案的卡片獲得8元購物券,取出印有“2016年里約奧運會”的圖案的卡片沒有獎勵,用ξ表示獲得獎券的面值,求ξ的分布列和數(shù)學(xué)期望E(ξ).
②在①的條件下,若商場每天有800人參與抽獎活動,顧客獲得的購物券全部用于捆綁其他商品消費,每1元購物券能給商場帶來10元純利潤,則商場每天在這個活動中能獲得的純利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=cosx(sinx-$\sqrt{3}$cosx)+$\frac{\sqrt{3}}{2}$.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值及取得最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知F1,F(xiàn)2分別是雙曲線x2-$\frac{y^2}{a^2}$=1(a>0)的兩個焦點,O為坐標(biāo)原點,圓O是以F1,F(xiàn)2為直徑的圓,直線l:y=$\sqrt{7}$x-4與圓O相交,則實數(shù)a的取值范圍是(  )
A.(0,1)B.(0,1]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x2+3x-3-kex
(I) 當(dāng)x≥-5時,f(x)≤0,求k的取值范圍;
(II) 當(dāng)k=-1時,求證:f(x)>-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合 P={0,1,2},若P∩(∁zQ)=∅,則集合Q可以為( 。
A.{x|x=2a,a∈P}B.{x|x=2a,a∈P}C.{x|x=a-1,a∈N}D.{x|x=a2,a∈N}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某機構(gòu)在某一學(xué)校隨機抽取30名學(xué)生參加環(huán)保知識測試,測試成績(單位:分)如圖所示,假設(shè)得分值的中位數(shù)為me,眾數(shù)為m0,平均值為$\overline x$,則( 。
A.me=m0=$\overline x$B.me=m0<$\overline x$C.me<m0<$\overline x$D.m0<me<$\overline x$

查看答案和解析>>

同步練習(xí)冊答案