函數(shù)f(x)=x+lnx的導(dǎo)數(shù)是f′(x)=
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:直接利用函數(shù)的導(dǎo)數(shù)運(yùn)算法則求解即可.
解答: 解:函數(shù)f(x)=x+lnx的導(dǎo)數(shù)是f′(x)=1+
1
x

故答案為:1+
1
x
點(diǎn)評:本題考查導(dǎo)數(shù)的運(yùn)算法則的應(yīng)用,基本知識(shí)的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}滿足a1=1,an+1=f(
1
an
),n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式,
理科:(2)令bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b2+…+bn,若Sn
m-2005
2
對一切n∈N+成立,求最小整數(shù)m.
文科:(2)令bn=
1
anan+1
(n≥1),求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=m,m為正整數(shù),an+1=
an
2
,當(dāng)an為偶數(shù)時(shí)
3an+1,當(dāng)an為奇數(shù)時(shí)
,若a6=1,則m所有可能的取值為( 。
A、{4,5}
B、{4,32}
C、{4,5,32}
D、{5,32}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過A(6,5),B(0,1)兩點(diǎn),并且圓心在直線3x+10y+9=0上的圓方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,復(fù)數(shù)z=-
1
2
+
3
2
i的共軛復(fù)數(shù)為
.
z
,則
.
z
+|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)和g(x)都是奇函數(shù),且F(x)=af(x)+bg(x)+2在區(qū)間(0,+∞)上有最大值5,則F(x)在(-∞,0)上( 。
A、有最小值-5
B、有最大值-5
C、有最小值-1
D、有最大值-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
π
2
<θ<π,cos θ=-
3
5
,則tan(π-θ)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i為虛數(shù)單位,復(fù)數(shù)
i
i+1
在復(fù)平面內(nèi)對應(yīng)的點(diǎn)到原點(diǎn)的距離為( 。
A、
1
2
B、
2
2
C、1
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x>0,y>0,x+y=1,則
1
y
+
2
x
有最小值
 

查看答案和解析>>

同步練習(xí)冊答案