【題目】已知平面,直線.給出下列命題:
① 若,則; ② 若,則;
③ 若,則; ④ 若,則.
其中是真命題的是_________.(填寫所有真命題的序號).
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別是,,且,點在橢圓上,面積的最大值為.
(1)求橢圓的方程;
(2)過的直線交橢圓于、兩點,求內(nèi)切圓半徑的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線C的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求曲線C的參數(shù)方程和直線的直角坐標方程;
(2)若直線與軸和y軸分別交于A,B兩點,P為曲線C上的動點,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)F是拋物線y2=4x的焦點,M,P,Q是拋物線上三個不同的動點,直線PM過點F,MQ∥OP,直線QP與MO交于點N.記點M,P,Q的縱坐標分別為y0,y1,y2.
(1)證明:y0=y1﹣y2;
(2)證明:點N的橫坐標為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年1月1日,我國全面實行二孩政策,某機構(gòu)進行了街頭調(diào)查,在所有參與調(diào)查的青年男女中,持“響應(yīng)”“猶豫”和“不響應(yīng)”態(tài)度的人數(shù)如表所示:
響應(yīng) | 猶豫 | 不響應(yīng) | |
男性青年 | 500 | 300 | 200 |
女性青年 | 300 | 200 | 300 |
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并判斷能否有97.5%的把握認為猶豫與否與性別有關(guān);
猶豫 | 不猶豫 | 總計 | |
男性青年 |
|
|
|
女性青年 |
|
|
|
總計 |
|
| 1800 |
(2)以表中頻率作為概率,若從街頭隨機采訪青年男女各2人,求4人中“響應(yīng)”的人數(shù)恰好是“不響應(yīng)”的人數(shù)(“不響應(yīng)”的人數(shù)不為0)的2倍的概率.
參考公式:
參考數(shù)據(jù):
P(K2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,動圓:(圓心為橢圓上異于左右頂點的任意一點),過原點作兩條射線與圓相切,分別交橢圓于,兩點,且切線長最小值時,.
(Ⅰ)求橢圓的方程;
(Ⅱ)判斷的面積是否為定值,若是,則求出該值;不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)是圓上的任意一點,是過點且與軸垂直的直線,是直線與軸的交點,點在直線上,且滿足.當點在圓上運動時,記點的軌跡為曲線.
(1)求曲線的方程;
(2)已知點,過的直線交曲線于兩點,交直線于點.判定直線的斜率是否依次構(gòu)成等差數(shù)列?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】F1,F2是橢圓C1和雙曲線C2的公共焦點,e1,e2分別為曲線C1,C2的離心率,P為曲線C1,C2的一個公共點,若,且,則e1∈_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com