以橢圓的右焦點F2為圓心作一個圓,使此圓過橢圓的中心,交橢圓于點M、N,若直線MF1(F1為橢圓左焦點)是圓F2的切線,則橢圓的離心率為(    )

A.2-        B.-1          C.            D.

B


解析:

由題意|MF2|=c,

由橢圓定義|MF1|=2a-c.

又MF1⊥MF2,

∴c2+(2a-c)2=(2c)2化簡后兩邊除以a2,

得e2+2e-2=0,解得e=-1(負值已舍去).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

以橢圓的右焦點F2為圓心的圓恰好過橢圓的中心,交橢圓于點M、N,橢圓的左焦點為F1,且直線MF1與此圓相切,則橢圓的離心率e為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以橢圓的右焦點F2為圓心作一個圓,使此圓過橢圓中心O并交橢圓于點M,N,若過橢圓左焦點F1的直線MF1是圓F2的切線,則橢圓的離心率(  )
A、
3
B、
3
+1
C、
3
-1
D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以橢圓的右焦點F2為圓心作一個圓,使此圓過橢圓的中心O并交橢圓于點M、N,若過橢圓的左焦點F1的直線MF1是圓F2的切線,則橢圓的離心率為
3
-1
3
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以橢圓的右焦點F2為圓心作一個圓過橢圓的中心O并交于橢圓于M、N,若過橢圓左焦點F1的直線MF1是圓的切線,則橢圓的右準線l與圓F2的位置關系是
相交
相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以橢圓的右焦點F2為圓心作一個圓,使此圓過橢圓的中心O并交橢圓于點M、N,若過橢圓的左焦點F1的直線MF1是圓F2的切線,則右準線與圓F2(  )

查看答案和解析>>

同步練習冊答案