(本題滿分12分)如圖所示,已知四棱錐S—ABCD的底面ABCD是矩形,M、N分別是CD、SC的中點,SA⊥底面ABCD,SA=AD=1,AB=.
(1)求證:MN⊥平面ABN;(2)求二面角A—BN—C的余弦值
(1)見解析; (2)所求的二面角的余弦值為。
解析試題分析:(Ⅰ)建立空間直角坐標系,求出向量,計算從而證明∴即可證明MN⊥平面ABN;
(II)求平面NBC的法向量,平面ABN的法向量,利用向量的數(shù)量積求得二面角A-BN-C的余弦值.
解:法一 :以A點為原點,AB為x軸,AD為y軸,AD為z軸的空間直角坐標系,
則依題意可知相關各點的坐標分別是A(0,0,0),B(,0,0),C(,1,0),
D(0,1,0),S(0,0,1)……………………2分
…………………………4分
∴MN⊥平面ABN.………………………………………6分
(2)設平面NBC的法向量且又易知
令a=1,則……………………………………9分
顯然,就是平面ABN的法向量.
………………………………………10分
………………………………………12分
法二:(1)由題意知連則可求,則
…………………………6分
(2)因為,在平面內(nèi)作且,
又在,所以,
且 故所求的二面角的余弦值為………………………12分
考點:本題主要考查向量法證明直線與平面的垂直,二面角的求法,考查學生計算能力,邏輯思維能力,是中檔題.
點評:解決該試題的關鍵是合理的建立空間直角坐標系,然后準確的表示點的坐標,和法向量的坐標,進而得到垂直的判定和二面角的平面角的求解。
科目:高中數(shù)學 來源: 題型:解答題
如圖,為圓的直徑,點、在圓上,,矩形所在的平面與圓所在的平面互相垂直.已知,.
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的大;
(Ⅲ)當的長為何值時,平面與平面所成的銳二面角的大小為?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖,正三棱柱ABC—A1B1C1中,D是BC的中點,AA1=AB=1.
(I)求證:A1C//平面AB1D;
(II)求二面角B—AB1—D的大;
(III)求點C到平面AB1D的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)在四棱錐中,平面,,,
.
(Ⅰ)證明;
(Ⅱ)求二面角的正弦值;
(Ⅲ)設為棱上的點,滿足異面直線與所成的角為,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com