已知z1,z2是復數(shù),求證:若|z1-
.
z2
|=|1-z1z2|,則|z1|,|z2|中至少有一個值為1.
分析:利用|z|2=z•
.
z
,結(jié)合|z1-
.
z2
|=|1-z1z2|的平方,化簡出|z1|2+|z2|2=1+|z1|2•|z2|2
通過分解因式,推出|z1|,|z2|中至少有一個值為1.
解答:證:∵|z1-
.
z2
|=|1-z1z2|
∴|z1-
.
z2
|2=|1-z1z2|2
∴(z1-
.
z2
.
(z1-
.
z2
)
=(1-z1z2
.
(1-z1z2)

∴(z1-
.
z2
)(
.
z1
-z2)=(1-z1z2)(1-
.
z1
.
z2
).
化簡后得z1
.
z1
+z2
.
z2
=1+z1z2
.
z1
.
z2

∴|z1|2+|z2|2=1+|z1|2•|z2|2
∴(|z1|2-1)(|z2|2-1)=0.∴|z1|2=1,或|z2|2=1.
∴|z1|,|z2|中至少有一個為1.
點評:本題考查復數(shù)的基本概念,復數(shù)代數(shù)形式的乘除運算,考查轉(zhuǎn)化思想,計算能力,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知z1,z2是復數(shù),|z1|=1,|z2|=
3
,|z1-z2|=2
,則|z1+z2|=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知z1,z2是復數(shù),定義復數(shù)的一種運算“?”為:z1?z2=
z1z2(|z1|>|z2|)
z1+z2(|z1|≤|z2|)
若z1=2+i且z1?z2=3+4i,則復數(shù)z2=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知Z是復數(shù),求證:①|Z|2=Z•
.
Z
;②
.
Z-
.
Z
=
.
Z
-Z

(2)已知z1,z2是復數(shù),若|z1-
.
z2
|=|1-z1z2|,求證:|z1|,|z2|中至少有一個值為1.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河南省三門峽市盧氏一中分校高二(下)質(zhì)量檢測數(shù)學試卷(文科)(解析版) 題型:選擇題

已知z1,z2是復數(shù),定義復數(shù)的一種運算“?”為:若z1=2+i且z1?z2=3+4i,則復數(shù)z2=( )
A.2+i
B.1+3i
C.2+i或1+3i
D.條件不夠,無法求出

查看答案和解析>>

同步練習冊答案