【題目】2020年春節(jié)突如其來(lái)的新型冠狀病毒肺炎在湖北爆發(fā),為了打贏疫情防控阻擊戰(zhàn),我們執(zhí)行了延長(zhǎng)假期政策,在延長(zhǎng)假期面前,我們停課不停學(xué),河南省教育廳組織部分優(yōu)秀學(xué)校的優(yōu)秀教師錄播《名師同步課堂》,我校高一年級(jí)要在甲、乙、丙、丁、戊5位數(shù)學(xué)教師中隨機(jī)抽取3人參加錄播課堂,則甲、乙兩位教師同時(shí)被選中的概率為( ).

A.B.C.D.

【答案】A

【解析】

(方法一)結(jié)合組合數(shù),直接根據(jù)古典概型的概率計(jì)算公式求解即可.

(方法二)利用列舉法,直接根據(jù)古典概型的概率計(jì)算公式求解即可.

解:(方法一)由題意得,甲、乙兩位教師同時(shí)被選中的概率為,

(方法二)將甲、乙、丙、丁、戊5位數(shù)學(xué)教師依次編號(hào)為,

記“甲、乙兩位教師同時(shí)被選中” 為事件,

5位數(shù)學(xué)教師中隨機(jī)抽取3人有,,,,,,,,10種情況,

事件包含,3種情況,

,

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)ln(x1) (aR)

(1)當(dāng)a1時(shí),求函數(shù)f(x)在點(diǎn)(0,f(0))處的切線方程;

(2)討論函數(shù)f(x)的極值;

(3)求證:ln(n1)> (nN*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】汕尾市基礎(chǔ)教育處為調(diào)查在校中學(xué)生每天放學(xué)后的自學(xué)時(shí)間情況,在本市的所有中學(xué)生中隨機(jī)抽取了120名學(xué)生進(jìn)行調(diào)查,現(xiàn)將日均自學(xué)時(shí)間小于1小時(shí)的學(xué)生稱為“自學(xué)不足”者根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)后,得到如下列聯(lián)表,已知在調(diào)查對(duì)象中隨機(jī)抽取1人,為“自學(xué)不足”的概率為

非自學(xué)不足

自學(xué)不足

合計(jì)

配有智能手機(jī)

30

沒(méi)有智能手機(jī)

10

合計(jì)

請(qǐng)完成上面的列聯(lián)表;

根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“自學(xué)不足”與“配有智能手機(jī)”有關(guān)?

附表及公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的部分圖象大致是( )

A. B.

C. D.

【答案】D

【解析】當(dāng)時(shí), ,所以去掉A,B;

因?yàn)?/span>,所以,因此去掉C,選D.

點(diǎn)睛:有關(guān)函數(shù)圖象識(shí)別問(wèn)題的常見(jiàn)題型及解題思路(1)由解析式確定函數(shù)圖象的判斷技巧:(1)由函數(shù)的定義域,判斷圖象左右的位置,由函數(shù)的值域,判斷圖象的上下位置;由函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì);由函數(shù)的奇偶性,判斷圖象的對(duì)稱性;由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).(2)由實(shí)際情景探究函數(shù)圖象.關(guān)鍵是將問(wèn)題轉(zhuǎn)化為熟悉的數(shù)學(xué)問(wèn)題求解,要注意實(shí)際問(wèn)題中的定義域問(wèn)題.

型】單選題
結(jié)束】
8

【題目】《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列的公比,前項(xiàng)和為,且滿足.,,分別是一個(gè)等差數(shù)列的第1項(xiàng),第2項(xiàng),第5項(xiàng).

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和;

(3)若,的前項(xiàng)和為,且對(duì)任意的滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三個(gè)內(nèi)角所對(duì)的邊分別是,若.

1)求角

2)若的外接圓半徑為2,求周長(zhǎng)的最大值.

【答案】(1) ;(2) .

【解析】試題分析:(1由正弦定理將邊角關(guān)系化為邊的關(guān)系,再根據(jù)余弦定理求角,(2先根據(jù)正弦定理求邊,用角表示周長(zhǎng),根據(jù)兩角和正弦公式以及配角公式化為基本三角函數(shù),最后根據(jù)正弦函數(shù)性質(zhì)求最大值.

試題解析:1)由正弦定理得,

,∴,即

因?yàn)?/span>,則.

(2)由正弦定理

, ,

∴周長(zhǎng)

,

∴當(dāng)時(shí)

∴當(dāng)時(shí), 周長(zhǎng)的最大值為.

型】解答
結(jié)束】
18

【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國(guó)際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:

其中: , ,

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(的值精確到0.01)

(3)若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的0.9~1.06倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線處的切線經(jīng)過(guò)點(diǎn).

(1)證明: ;

(2)若當(dāng)時(shí), ,求的取值范圍.

【答案】(1)證明見(jiàn)解析;(2) .

【解析】試題分析:(1先根據(jù)導(dǎo)數(shù)幾何意義得切線斜率為,再根據(jù)切線過(guò)點(diǎn),解得導(dǎo)數(shù)可得導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)函數(shù)符號(hào)變號(hào)規(guī)律可得函數(shù)單調(diào)性,根據(jù)函數(shù)單調(diào)性可得函數(shù)最小值為0,即得結(jié)論,2先化簡(jiǎn)不等式為,分離得,再利用導(dǎo)數(shù)求函數(shù)單調(diào)性,利用羅伯特法則求最大值,即得的取值范圍.

試題解析:(1)曲線處的切線為,即

由題意得,解得

所以

從而

因?yàn)楫?dāng)時(shí), ,當(dāng)時(shí), .

所以在區(qū)間上是減函數(shù),區(qū)間上是增函數(shù),

從而.

(2)由題意知,當(dāng)時(shí), ,所以

從而當(dāng)時(shí), ,

由題意知,即,其中

設(shè),其中

設(shè),即,其中

,其中

(1)當(dāng)時(shí),因?yàn)?/span>時(shí), ,所以是增函數(shù)

從而當(dāng)時(shí),

所以是增函數(shù),從而.

故當(dāng)時(shí)符合題意.

(2)當(dāng)時(shí),因?yàn)?/span>時(shí),

所以在區(qū)間上是減函數(shù)

從而當(dāng)時(shí),

所以上是減函數(shù),從而

故當(dāng)時(shí)不符合題意.

(3)當(dāng)時(shí),因?yàn)?/span>時(shí), ,所以是減函數(shù)

從而當(dāng)時(shí),

所以是減函數(shù),從而

故當(dāng)時(shí)不符合題意

綜上的取值范圍是.

型】解答
結(jié)束】
22

【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線 .以為極點(diǎn), 軸的非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)射線)與曲線的異于極點(diǎn)的交點(diǎn)為,與曲線的交點(diǎn)為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示,則下列判斷正確的是(  )

A. 函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱

B. 函數(shù)的圖象關(guān)于直線對(duì)稱

C. 函數(shù)的最小正周期為

D. 當(dāng)時(shí),函數(shù)的圖象與直線圍成的封閉圖形面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線與圓相交于不同的兩點(diǎn),點(diǎn)是線段的中點(diǎn)。

(1)求直線的方程;

(2)是否存在與直線平行的直線,使得與與圓相交于不同的兩點(diǎn),不經(jīng)過(guò)點(diǎn),且的面積最大?若存在,求出的方程及對(duì)應(yīng)的的面積S;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案