如圖,長方體中,,點E是AB的中點.

(1)求三棱錐的體積;
(2)證明: ; 
(3)求二面角的正切值.
(1)1;(2)詳見解析;(3)

試題分析:(1)求四面體的體積,當高不好確定時候,可考慮等體積轉化,該題中,高,可求體積;(2)證明直線和直線垂直,可先證明直線和平面垂直,由,從而,所以,(3) 求二面角的平面角,可以利用幾何法,先找到二面角的平面角,然后借助平面圖形去計算,∵,所以,進而可證,就是的平面角,二面角也可以利用空間向量法,建立適當?shù)目臻g直角坐標系,把相關點的坐標表示出來,計算兩個半平面的法向量,進而求法向量的夾角,然后得二面角的余弦值.
試題解析:(1)解:在三棱錐D1-DCE中,D1D⊥平面DCE,D1D=1
在△DCE中,,
CD=2,CD2=CE2+DE2  ∴CE⊥DE.

∴三棱錐D1-DCE的體積. =                    4分
(2)證明:連結AD1,由題可知:四邊形ADD1A1是正方形
∴A1D⊥AD1 又∵AE⊥平面ADD1A1,A1D平面ADD1A1
∴AB⊥AD1 又∵AB平面AD1E,AD1平面A D1E  ABAD1=A
∴A1D⊥平面AD1E 又∵D1E平面AD1E
∴A1D⊥D1E                                               8分
(3)根據(jù)題意可得:D1D⊥平面ABCD
又因為CE平面ABCD,所以D1D⊥CE。
又由(1)中知,DE⊥CE,D1D平面D1DE,DE平面D1DE,D1DDE=D,
∴CE⊥平面D1DE,又∵D1E平面D1DE ∴CE⊥D1E.
∴∠D1ED即為二面角D1―EC―D的一個平面角.
在Rt△D1DE中,∠D1DE=90°,D1D="1," DE=
 
∴二面角D1―ED―D的正切值是                         12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正三棱柱ABC—A1B1C1的各棱長都相等,M、E分別是和AB1的中點,點F在BC上且滿足BF∶FC=1∶3.

(1)求證:BB1∥平面EFM;
(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在四棱錐中,底面是正方形,側面是正三角形,平面底面

(Ⅰ)如果為線段VC的中點,求證:平面;
(Ⅱ)如果正方形的邊長為2, 求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在直三棱柱中,,的中點.

(Ⅰ) 若AC1⊥平面A1BD,求證:B1C1⊥平面ABB1A1;
(Ⅱ)在(Ⅰ)的條件下,設AB=1,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AB∥DC,已知BD=2AD=2PD=8,AB=2DC=4

(Ⅰ)設M是PC上一點,證明:平面MBD⊥平面PAD;
(Ⅱ)若M是PC的中點,求棱錐P-DMB的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=,AD=CD=1.

求證:BD⊥AA1;
若四邊形是菱形,且,求四棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直角梯形的上底和下底長分別為,較短腰長為,若以較長的底為旋轉軸將該梯形旋轉一周,則該旋轉體的體積為(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知正方體外接球的表面積為,那么正方體的棱長等于________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖直三棱柱ABC﹣A1B1C1的體積為V,點P、Q分別在側棱AA1和CC1上,AP=C1Q,則四棱錐B﹣APQC的體積為(  )
   
A.B.C.D.

查看答案和解析>>

同步練習冊答案