已知點G是△ABC的重心,O是空間任一點.若
OB
+
OC
OG
+
AG
,則λ的值為
 
考點:平面向量的基本定理及其意義,向量的加法及其幾何意義
專題:平面向量及應用
分析:本題中的所給的向量等式不易處理,考慮到點G是△ABC的重心,故可根據(jù)重心的性質(zhì)先得到相關(guān)的向量方程,再由向量的運算規(guī)則將等式中的向量用題設中的四個向量表示出來,整理,根據(jù)同一性求得參數(shù)的值.
解答: 解:由于G是三角形ABC的重心,
則有
GA
+
GB
+
GC
=
0
,
GA
+
OB
-
OG
+
OC
-
OG
=
0

OB
+
OC
=2
OG
+
AG
,
OB
+
OC
OG
+
AG

∴λ=2.
故答案為:2.
點評:本題考查向量的相等及向量的加減運算法則,向量數(shù)乘的概念,三角形重心的幾何性質(zhì),是向量在幾何中應用的基本題型.解決本題的關(guān)鍵是利用重心的幾何性質(zhì)建立起向量等式,此類題一定要注意找準下手的角度.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(1)解不等式|x2-9|≤x+3.
(2)設x,y,z∈R+且x+2y+3z=1,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,由正三棱柱ABC-A1B1C1與正四面體D-ABC組成的幾何體中,AA1=1,AB=2,O1是正三角形A1B1C1的中心
(I)求證:DO1⊥平面A1B1C1;
(Ⅱ)求平面ACD與平面AA1B1B所成的二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

全集U=R,集合A={x|-1≤x<3},B={x|2<x≤5},
求:(1)A∩B;(2)A∪B;(3)(∁UA)∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題P:關(guān)于x的不等式x2+(a-1)x+a2≤0的解集為空集.命題Q:函數(shù)y=(2a2-a)x為增函數(shù).P、Q中有且只有一個是真命題,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ),其中ω>0,|φ|<
π
2

(1)若cos
π
4
cosφ-sin
4
sinφ=0,求φ的值;
(2)在(1)的條件下,若函數(shù)f(x)的圖象與x軸的相鄰兩個交點之間的距離等于
π
3
,求函數(shù)f(x)的解析式;
(3)在(2)的條件下,若方程2f(x)-1=0在區(qū)間[a,b]上有三個實數(shù)根,求b-a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
(1)
cos(α+π)sin(-α)
cos(-3π-α)sin(-α-4π)

(2)
cos(α-
π
2
)
sin(
2
+α)
•sin(α-2π)•cos(2π-α).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,且離心率為
2
2
,點A(-
2
2
,
3
2
)在橢圓C上.
(1)求橢圓C的方程;
(2)是否存在斜率為k的直線l與橢圓C交于不同的兩點M、N,使直線F2M與F2N的傾斜角互補,且直線l是否恒過定點,若存在,求出該定點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=2px(p>0)的焦點作傾斜角為45度的直線交拋物線于A,B兩點,若線段AB的中點坐標(3,2),則p=
 

查看答案和解析>>

同步練習冊答案