如圖所示在多面體ABCDEF中,已知ABCD是邊長為1的正方體,且△ADE、△BCF均為正三角形,EF∥AB,EF=2,則該多面體的體積為

[  ]

A.
B.
C.
D.
答案:A
解析:

如圖所示分別過A、BEF的垂線,垂足分別為G、HDG、CH


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點.
(1)請在線段CE上找到點F的位置,使得恰有直線BF∥平面ACD,并證明這一事實;
(2)求平面BCE與平面ACD所成銳二面角的大。
(3)求點G到平面BCE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的多面體中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,BC⊥AC,EF∥AC,AB=
2
,EF=EC=1.
(1)求證:AF∥平面BDE;
(2)求證:DF⊥平面BEF;
(3)求二面角A-BF-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點.
(1)請在線段CE上找到點F的位置,使得恰有直線BF∥平面ACD,并證明這一事實;
(2)求平面BCE與平面ACD所成銳二面角的大。
(3)求點G到平面BCE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.
(1)請在線段CE上找到點F的位置,使得恰有直線BF∥平面ACD,并證明這一事實;
(2)求多面體ABCDE的體積;
(3)求直線EC與平面ABED所成角的正弦值.

查看答案和解析>>

同步練習冊答案