已知是等比數(shù)列的前項(xiàng)和,、成等差數(shù)列,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在正整數(shù),使得?若存在,求出符合條件的所有的集合;若不存在,說(shuō)明理由.
(1);(2)存在符合條件的正整數(shù)的集合為.

試題分析:(1)設(shè)數(shù)列的公比為,依題意,列出關(guān)于首項(xiàng)與公比的方程組,解之即可求得數(shù)列的通項(xiàng)公式;(2)依題意,可得,對(duì)的奇偶性進(jìn)行分類討論,即可求得答案.
試題解析:(1)解:設(shè)數(shù)列的公比為,則,
由題意得解得
故數(shù)列的通項(xiàng)公式為                  6分
(2)由(1)有                                    7分
若存在,使得,則,即                      8分
當(dāng)為偶數(shù)時(shí),,上式不成立                                            9分
當(dāng)為奇數(shù)時(shí),,即,則                          11分
綜上,存在符合條件的正整數(shù)的集合為                    12分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)無(wú)窮等比數(shù)列的公比為q,且表示不超過(guò)實(shí)數(shù)的最大整數(shù)(如),記,數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為.
(Ⅰ)若,求
(Ⅱ)若對(duì)于任意不超過(guò)的正整數(shù)n,都有,證明:.
(Ⅲ)證明:)的充分必要條件為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為實(shí)數(shù),數(shù)列滿足,當(dāng)時(shí),
(Ⅰ);(5分)
(Ⅱ)證明:對(duì)于數(shù)列,一定存在,使;(5分)
(Ⅲ)令,當(dāng)時(shí),求證:(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

公比為2的等比數(shù)列的各項(xiàng)都是正數(shù),且=16,則=(   ).
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知定義在上的函數(shù)滿足,且, ,若是正項(xiàng)等比數(shù)列,且,則等于      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

公比為2的等比數(shù)列{an}的各項(xiàng)都是正數(shù),且a3a11=16,則log2a10=(  )       
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等比數(shù)列{an}中,若a1,a4=-4,則|a1|+|a2|+…+|an|=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等比數(shù)列的和為定值,且公比為,令,則的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

公比不為1的等比數(shù)列滿足,則       

查看答案和解析>>

同步練習(xí)冊(cè)答案