已知函數(shù)f(x)=
2x,x>0
x+1,x≤0
,若f(a)+f(1)=0,則實(shí)數(shù)a的值等于( 。
A、3B、1C、-1D、-3
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用分段函數(shù)的性質(zhì)求解.
解答: 解:∵函數(shù)f(x)=
2x,x>0
x+1,x≤0
,f(a)+f(1)=0,
∴當(dāng)a>0時,f(a)+f(1)=2a+2=0,解得a=-1,不成立;
當(dāng)a<0時,f(a)+f(1)=a+1+2=0,解得a=-3.
綜上所述,a=-3.
故選:C.
點(diǎn)評:本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意分段函數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的程序框圖,輸出結(jié)果是(  )
A、x的值或-x的值B、|x|的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩艘輪船都要在某個泊位?6小時,假定它們在一晝夜的時間段中隨機(jī)地到達(dá).則這兩艘船中至少有一艘在?坎次粫r必須等待的概率是( 。
A、
9
16
B、
1
2
C、
7
16
D、
3
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1
2
,左焦點(diǎn)為F,A,B,C為其三個頂點(diǎn),直線CF與AB交于D,則tan∠BDC的值等于( 。
A、3
3
B、-3
3
C、
3
5
D、
-
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(
1
2
,
3
2
),
b
=(-
3
2
,
1
2
),
c
=(cosθ,sinθ),則(
a
-
c
)•(
b
-
c
)的最大值是( 。
A、1
B、2
C、
2
+1
D、
2
+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

算術(shù)符號\和MOD分別用來取商和余數(shù),比如5\2的值是2,5MOD2的值是1.通過如圖程序:若輸入a=333,k=5,則輸出的b為( 。
A、2313B、3132
C、93D、2332

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p:
1
x
<1,條件q:|x|≤1,則¬p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、即非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx+d在O,A點(diǎn)處取到極值,其中O是坐標(biāo)原點(diǎn),A在曲線y=x2sinx+xcosx,x∈[
π
3
,
3
]上,則曲線y=f(x)的切線的斜率的最大值是( 。
A、
4
B、
3
2
C、
3
3
π
4
+
3
4
D、
3
3
π
4
-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),直線l是橢圓的右準(zhǔn)線.
(1)若橢圓C的離心率為
1
2
,直線l:x=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線PQ恰好過原點(diǎn),求橢圓C的離心率.

查看答案和解析>>

同步練習(xí)冊答案