【題目】某校為了解全校高中學(xué)生五一小長假參加實踐活動的情況,抽查了100名學(xué)生,統(tǒng)計他們假期參加實踐活動的時間,繪成的頻率分布直方圖如圖所示.

(1)求這100名學(xué)生中參加實踐活動時間在6~10小時內(nèi)的人數(shù);
(2)估計這100名學(xué)生參加實踐活動時間的眾數(shù)、中位數(shù)和平均數(shù).

【答案】
(1)【解答】解:依題意,100名學(xué)生中參加實踐活動的時間在6~10小時內(nèi)的人數(shù)為:

100×[1﹣(0.04+0.12+0.05)×2]=58,

即這100名學(xué)生中參加實踐活動時間在6~10小時內(nèi)的人數(shù)為58.


(2)【解答】解:由頻率分布直方圖可以看出最高矩形橫軸上的中點為7,

故這100名學(xué)生參加實踐活動時間的眾數(shù)的估計值為7小時,

由(0.04+0.12+0.15+a+0.05)×2=1,解得a=0.14,

則6+ ,

即這100名學(xué)生參加實踐活動時間的中位數(shù)為7.2小時,

這100名學(xué)生參加實踐活動時間的平均數(shù)為:

0.04×2×3+0.12×2×5+0.15×2×7+0.14×2×9+0.05×2×11=7.16小時.


【解析】(1)利用頻率分布直方圖能求出100名學(xué)生中參加實踐活動的時間在6~10小時內(nèi)的人數(shù).
(2)由頻率分布直方圖可以看出最高矩形橫軸上的中點為7,由此能求出這100名學(xué)生參加實踐活動時間的眾數(shù)的估計值;(0.04+0.12+0.15+a+0.05)×2=1,求出a=0.14,即可求出這100名學(xué)生參加實踐活動時間的中位數(shù)和平均數(shù)。
【考點精析】掌握頻率分布直方圖是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x+1)lnx﹣a(x﹣1).
(1)當a=3時,求曲線y=f(x)在(1,f(1))處的切線方程;
(2)設(shè) ,且a>1,討論函數(shù)g(x)的單調(diào)性和極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式x[(f(x)﹣f(﹣x)]<0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖的程序框圖,運行相應(yīng)的程序,則輸出的S值為( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1=an﹣2anan+1 , an≠0且a1=1.
(1)求數(shù)列{an}的通項公式;
(2)令 ,求數(shù)列{bn}的前2n項和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有7名學(xué)科競賽優(yōu)勝者,其中語文學(xué)科是A1 , A2 , 數(shù)學(xué)學(xué)科是B1 , B2 , 英語學(xué)科是C1 , C2 , 物理學(xué)科是D1 , 從競賽優(yōu)勝者中選出3名組成一個代表隊,要求每個學(xué)科至多選出1名.
(1)求B1被選中的概率;
(2)求代表隊中有物理優(yōu)勝者的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的a值為(
A.﹣3
B.
C.﹣
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,以原點O為極點,x軸的非負半軸為極軸,建立極坐標系,曲線C1的參數(shù)方程為 ,曲線C2的極坐標方程為
(1)求曲線C1的普通方程和曲線C2的直角坐標方程;
(2)設(shè)P為曲線C1上一點,Q曲線C2上一點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命題.
(1)求實數(shù)m的取值集合M;
(2)設(shè)不等式 的解集為N,若x∈N是x∈M的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案