13.若關(guān)于x的方程f(x)=mx2+3x-m-2有且只有一個零點(diǎn)在區(qū)間(0,1)內(nèi),則實(shí)數(shù)m的取值范圍是(-2,+∞).

分析 由題意利用二次函數(shù)的性質(zhì)分類討論,求得m的范圍.

解答 解:當(dāng)m=0時,方程即3x-2=0,它只有一個實(shí)數(shù)根x=$\frac{2}{3}$,滿足條件.
當(dāng)m≠0時,①由$\left\{\begin{array}{l}{△=9+4m(m+2)=0}\\{0<-\frac{3}{2m}<1}\end{array}\right.$,此時無解,
②由f(0)•f(1)=-(m+2)<0,求得m>-2且m≠0.
③由f(0)•f(1)=0,可得m=-2,此時,方程即-2x2+3x=0兩解0和$\frac{3}{2}$(舍去),不成立.
綜上所得,m>-2.
故答案為:(-2,+∞)

點(diǎn)評 本題主要考查一元二次方程根的分布與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$,$\overrightarrow$,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{a}$•$\overrightarrow$=2,則|$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.3B.1+$\sqrt{2}$C.7D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,△ABC中的陰影部分是由曲線y=x2與直線x-y+2=0所圍成,向△ABC內(nèi)隨機(jī)投擲一點(diǎn),則該點(diǎn)落在陰影部分的概率為$\frac{9}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)集合A={x|-3≤x≤4},B={x|2m-1<x<m+1}
(1)當(dāng)m=1時,求A∩B;
(2)若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知二次函數(shù)f(x)滿足f(0)=0且f(x+1)=f(x)+x+1,
(1)求f(x)的表達(dá)
(2)求函數(shù)f(x)在[t,t+1]上的最小值g(t)
(3)若g(t)+m≥0對t∈R恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知甲、乙兩組數(shù)據(jù)如莖葉圖所示,若它們的中位數(shù)和平均數(shù)都相同,且ma+nb=1(a,b∈R+),則$\frac{1}{2a}+\frac{3}$的最小值為( 。
A.36B.32C.$4\sqrt{6}$D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如果函數(shù)f(x)的對于任意實(shí)數(shù)x,存在常數(shù)M,使不等式|f(x)|≤M|x|恒成立,就稱f(x)為有界泛函數(shù).下列四個函數(shù),屬于有界泛函數(shù)的是(  )
①f(x)=1②f(x)=x2③f(x)=(sinx+cosx)x④$f(x)=\frac{x}{{{x^2}+x+1}}$.
A.①②B.②④C.③④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+4≥0}\\{x-2≤0}\end{array}\right.$,則z=x-y的最大值與最小值之差為( 。
A.5B.6C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=x2-cosx,對于$[-\frac{π}{2},\frac{π}{2}]$上的任意x1,x2,有如下條件:①x1>x2;②$x_1^2>x_2^2$;③|x1|>x2,④$x_1^2<x_2^2$其中能使f(x1)>f(x2)恒成立的條件是序號是②.

查看答案和解析>>

同步練習(xí)冊答案