用五點(diǎn)法作出函數(shù)y=2sin(2x-
π
3
)的圖象(在答題卡上所畫坐標(biāo)系中),并敘述該函數(shù)是由y=sinx的圖象如何變化而當(dāng)?shù)玫剑?/div>
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換,五點(diǎn)法作函數(shù)y=Asin(ωx+φ)的圖象
專題:
分析:先用五點(diǎn)法作函數(shù)y=Asin(ωx+φ)在一個(gè)周期上的簡圖,再根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.
解答: 解:列表:
 2x-
π
3
 0 
π
2
 π 
2
 2π
 x 
π
6
 
12
 
3
 
11π
12
 
6
 y 0 2 0-2 0
作圖:

把函數(shù)y=sin的圖象向右平移
π
3
個(gè)單位,再把圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼囊话,再把把圖象上所有點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼?倍,
即可得到函數(shù)y=2sin(2x-
π
3
)的圖象.
點(diǎn)評(píng):本題主要考查用五點(diǎn)法作函數(shù)y=Asin(ωx+φ)在一個(gè)周期上的簡圖,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-1,其定義域?yàn)锳={1,2,3,4,5,6,7},值域?yàn)锽.
(1)求B;
(2)若全集為U={x|0<x≤15,x∈Z},求(∁UA)∩B;∁U(A∪B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={-5,-4,-3,-2,-1,0,1,2,3,4,5},B={1,2,3},C={3,4,5},求:
(Ⅰ)B∪C,∁A(B∪C); 
(Ⅱ)A∩CA(B∪C).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x-2
2x-1
,則f(
1
2015
)+f(
2
2015
)+f(
3
2015
)+…+f(
2014
2015
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合M={x|x2+x-6=0},N={x|ax-1=0},且N⊆M,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為等差數(shù)列中,a1+a2+…+a10=15,a11+a12+…+a20=20,則a21+a22+…+a30=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
3xy2
6x5
4y3
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
-1+
3
i
2
(i是虛數(shù)單位),則z+z2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2ln(ax)(a>0).
(1)a=e時(shí),求f(x)在x=1處的切線方程;
(2)若f′(x)≤x2對(duì)任意的x>0恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=1時(shí),設(shè)函數(shù)g(x)=
f(x)
x
,若x1,x2∈(
1
e
,1),x1+x2<1,求證:x1•x2<(x1+x24

查看答案和解析>>

同步練習(xí)冊(cè)答案