14.已知函數(shù)$y=\left\{\begin{array}{l}x+4,x≤0\\{x^2}-2x,0<x≤4\\-x+2,x>4\end{array}\right.$.
(1)求f(f(5))的值;
(2)畫出函數(shù)的圖象.

分析 (1)直接利用分段函數(shù)求解函數(shù)值即可.
(2)利用分段函數(shù)畫出函數(shù)的圖象即可.

解答 解:(1)函數(shù)$y=\left\{\begin{array}{l}x+4,x≤0\\{x^2}-2x,0<x≤4\\-x+2,x>4\end{array}\right.$.
f(f(5))=f(-5+2)=f(-3)=-3+4=1.
(2)函數(shù)$y=\left\{\begin{array}{l}x+4,x≤0\\{x^2}-2x,0<x≤4\\-x+2,x>4\end{array}\right.$.
的圖象如圖:

點評 本題考查導(dǎo)函數(shù)的應(yīng)用,函數(shù)的圖象的畫法,考查數(shù)形結(jié)合思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某企業(yè)根據(jù)市場需求,決定生產(chǎn)一款大型設(shè)備,生產(chǎn)這種設(shè)備的年固定成本為500萬元,每生產(chǎn)x臺,需投入成本C(x)萬元,若年產(chǎn)量不足80臺時,C(x)=$\frac{1}{2}$x2+40x萬元,若年產(chǎn)量等于或超過80臺時,C(x)=101x+$\frac{8100}{x}$-2180萬元,每臺設(shè)備售價為100萬元,通過市場分析該企業(yè)生產(chǎn)的這種設(shè)備能全部售完.
(1)求年利潤y(萬元)關(guān)于年產(chǎn)量x(臺)的函數(shù)關(guān)系;
(2)年產(chǎn)量為多少臺時,該企業(yè)的設(shè)備的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,已知AB=2,AC=3,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-3.
(1)求BC的長;
(2)求sin(C+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合A={x||x-1|<2},Z為整數(shù)集,則集合A∩Z的子集個數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.值域為((0,+∞)的函數(shù)是( 。
A.$y={5^{\frac{1}{2-x}}}$B.$y={({\frac{1}{3}})^{1-x}}$C.$y=\sqrt{1-{2^x}}$D.$y=\sqrt{{{(\frac{1}{2})}^x}-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知命題p:(x+2)(x+1)<0命題$q:x+\frac{1}{x}∈[{-\frac{5}{2},-2}]$,則下列說法正確的是(  )
A.p是q的充要條件B.p是q的必要不充分條件
C.p是q的充分不必要條件D.是q的既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$α∈({0,\frac{π}{2}}),β∈({\frac{π}{2},π}),sinβ=\frac{{2\sqrt{2}}}{3},sin({α+β})=\frac{7}{9}$,則sinα的值為$\frac{1}{3}$;$tan\frac{α}{2}$的值為3-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.A={x|x是小于9的質(zhì)數(shù)},B={x|x是小于9的正奇數(shù)},則A∩B的子集個數(shù)是( 。
A.32B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}{(3-a)^x},x≤2\\{log_a}(x-1)+3,x>2\end{array}\right.$是定義域上的單調(diào)增函數(shù),則a的取值范圍是( 。
A.[3-$\sqrt{3}$,2)B.$(\sqrt{5}-1,\sqrt{3})$C.$(1,\sqrt{3})$D.$(1,3-\sqrt{3})$

查看答案和解析>>

同步練習(xí)冊答案