某市統(tǒng)計局就本地居民的月收入調查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示月收入在,(單位:元).

(Ⅰ)估計居民月收入在的概率;
(Ⅱ)根據(jù)頻率分布直方圖估計樣本數(shù)據(jù)的中位數(shù);
(Ⅲ)若將頻率視為概率,從本地隨機抽取3位居民(看做有放回的抽樣),求月收入在的居民數(shù)X的分布列和數(shù)學期望.

(1)0.2;(2)2400;(3)分布列詳見解析,0.9.

解析試題分析:(1)由頻率分布直方圖求概率;(2)利用頻率分布直方圖求中位數(shù);(3)利用二項分布,求每一種情況的概率,列出分布列,求數(shù)學期望.
試題解析:(Ⅰ)由題意,居民月收入在的概率約為.          2分
(Ⅱ)由頻率分布直方圖知,中位數(shù)在,
設中位數(shù)為,則,解得.6分
(Ⅲ)居民月收入在的概率為,
由題意知,,
因此,
,       10分
故隨機變量的分布列為

 X
 0
 1
 2
 3
 P
 0.343
0.441
0.189
0.027
的數(shù)學期望為.                                                12分
考點:1.頻率分步直方圖;2.中位數(shù);3.分布列;4.數(shù)學期望;5.二項分布.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某次有1000人參加的數(shù)學摸底考試,其成績的頻率分布直方圖如圖所示,規(guī)定85分及其以上為優(yōu)秀.

(1)下表是這次考試成績的頻數(shù)分布表,求正整數(shù)a, b的值;

區(qū)間
 
[75,80)
 
[80,85)
 
[85,90)
 
[90,95)
 
[95,100]
 
人數(shù)
 
50
 
a
 
350
 
300
 
b
 
(2)現(xiàn)在要用分層抽樣的方法從這1000人中抽取40人的成績進行分析,求其中成績?yōu)閮?yōu)秀的學生人數(shù);
(3)在(2)中抽取的40名學生中,要隨機選取2名學生參 加座談會,記“其中成績?yōu)閮?yōu)秀的人數(shù)”為X,求X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某中學高三年級從甲、乙兩個班級各選出七名學生參加數(shù)學競賽,他們取得的成績(滿分100分)的莖葉圖如圖所示,其中甲班學生的平均分是85,乙班學生成績的中位數(shù)是83,

(1)求x和y的值;
(2)計算甲班七名學生成績的方差;
(3)從成績在90分以上的學生中隨機抽取兩名學生,求甲班至少有一名學生的概率.
參考公式:方差其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

學校為了預防甲流感,每天上午都要對同學進行體溫抽查。某一天,隨機抽取甲、乙兩個班級各10名同學,測量他們的體溫如圖:(單位0.1℃)

(1)哪個班所選取的這10名同學的平均體溫高?
(2)一般℃為低熱,℃為中等熱,℃為高熱。按此規(guī)定,記事件A為“從甲班發(fā)熱的同學中任選兩人,有中等熱的同學”,記事件B為“從乙班發(fā)熱的同學中任選兩人,有中等熱的同學”,分別求事件A和事件B的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

從某學校高三年級名學生中隨機抽取名測量身高,據(jù)測量被抽取的學生的身高全部介于之間,將測量結果按如下方式分成八組:第一組.第二組; 第八組,下圖是按上述分組方法得到的條形圖.

(1)根據(jù)已知條件填寫下面表格:

組 別
1
2
3
4
5
6
7
8
樣本數(shù)
 
 
 
 
 
 
 
 
(2)估計這所學校高三年級名學生中身高在以上(含)的人數(shù);
(3)在樣本中,若第二組有人為男生,其余為女生,第七組有人為女生,其余為男生,在第二組和第七組中各選一名同學組成實驗小組,問:實驗小組中恰為一男一女的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2013年1月份,我國北方部分城市出現(xiàn)霧霾天氣,形成霧霾天氣主要原因與有關. 是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物. 日均值越小,空氣質量越好. 2012年2月29日,國家環(huán)保部發(fā)布的《環(huán)境空氣質量標準》見下表:

日均值k(微克)
空氣質量等級

一級

二級

超標

某環(huán)保部門為了了解甲、乙兩市的空氣質量狀況,在過去某月的30天中分別隨機抽取了甲、乙兩市6天的日均值作為樣本,樣本數(shù)據(jù)莖葉圖如上右圖所示(十位為莖,個位為葉). (Ⅰ)分別求出甲、乙兩市日均值的樣本平均數(shù),并由此判斷哪個市的空氣質量較好;
(Ⅱ)若從甲市這6天的樣本數(shù)據(jù)中隨機抽取兩天的數(shù)據(jù),求恰有一天空氣質量超標的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某班同學在“十八大”期間進行社會實踐活動,對[25,55]歲的人群隨機抽取人進行了一次當前投資生活方式----“房地產投資”的調查,得到如下統(tǒng)計和各年齡段人數(shù)頻率分布直方圖:
(Ⅰ)求n,a,p的值;
(Ⅱ)從年齡在[40,50)歲的“房地產投資”人群中采取分層抽樣法抽取9人參加投資管理學習活動,其中選取3人作為代表發(fā)言,記選取的3名代表中年齡在[40,45)歲的人數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知某池塘養(yǎng)殖著鯉魚和鯽魚,為了估計這兩種魚的數(shù)量,養(yǎng)殖者從池塘中捕出兩種魚各只,給每只魚做上不影響其存活的標記,然后放回池塘,待完全混合后,再每次從池塘中隨機的捕出只魚,記錄下其中有記號的魚的數(shù)目,立即放回池塘中。這樣的記錄做了次,并將記錄獲取的數(shù)據(jù)做成以下的莖葉圖。

(Ⅰ)根據(jù)莖葉圖計算有記號的鯉魚和鯽魚數(shù)目的平均數(shù),并估計池塘中的鯉魚和鯽魚的數(shù)量;

(Ⅱ)為了估計池塘中魚的總重量,現(xiàn)從中按照(Ⅰ)的比例對條魚進行稱重,據(jù)稱重魚的重量介于(單位:千克)之間,將測量結果按如下方式分成九組:第一組、第二組;……,第九組。右圖是按上述分組方法得到的頻率分布直方圖的一部分。
①估計池塘中魚的重量在千克以上(含千克)的條數(shù);
②若第二組、第三組、第四組魚的條數(shù)依次成公差為的等差數(shù)列,請將頻率分布直方圖補充完整;
③在②的條件下估計池塘中魚的重量的眾數(shù)、中位數(shù)及估計池塘中魚的總重量;
(Ⅲ)假設隨機地從池塘逐只有放回的捕出只魚中出現(xiàn)鯉魚的次數(shù)為,求的數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某班同學利用寒假在5個居民小區(qū)內選擇兩個小區(qū)逐戶進行一次“低碳生活習慣”的調查,以計算每戶每月的碳排放量.若月排放量符合低碳標準的稱為“低碳族”,否則稱為“非低碳族”.若小區(qū)內有至少的住戶屬于“低碳族”,則稱這個小區(qū)為“低碳小區(qū)”,否則稱為“非低碳小區(qū)”.已知備選的5個居民小區(qū)中有三個非低碳小區(qū),兩個低碳小區(qū).

(1)求所選的兩個小區(qū)恰有一個為“非低碳小區(qū)”的概率;
(2)假定選擇的“非低碳小區(qū)”為小區(qū),調查顯示其“低碳族”的比例為,數(shù)據(jù)如圖1所示,經過同學們的大力宣傳,三個月后,又進行了一次調查,數(shù)據(jù)如圖2所示,問這時小區(qū)是否達到“低碳小區(qū)”的標準?

查看答案和解析>>

同步練習冊答案