15.設(shè)A=$[\begin{array}{l}{-1}&{2}&{0}\\{5}&{2}&{-3}\\{0}&{1}&{1}\end{array}]$,寫出-5A.

分析 根據(jù)矩陣的數(shù)乘運(yùn)算,即可求得-5A.

解答 解:A=$[\begin{array}{l}{-1}&{2}&{0}\\{5}&{2}&{-3}\\{0}&{1}&{1}\end{array}]$,
-5A=$[\begin{array}{l}{5}&{-10}&{0}\\{-25}&{-10}&{15}\\{0}&{-5}&{-5}\end{array}]$.

點(diǎn)評(píng) 本題考查矩陣的線性運(yùn)算,考查數(shù)乘的運(yùn)算法則,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.行列式$|\begin{array}{l}{2}&{8}&{3}\\{1}&{5}&{7}\\{-1}&{4}&{-6}\end{array}|$中元素8的代數(shù)余子式的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,C1:$\left\{\begin{array}{l}{x=t}\\{y=k(t-1)}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C2:ρ2+10ρcosθ-6ρsinθ+33=0.
(1)求C1的普通方程及C2的直角坐標(biāo)方程,并說(shuō)明它們分別表示什么曲線;
(2)若P,Q分別為C1,C2上的動(dòng)點(diǎn),且|PQ|的最小值為2,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),F(xiàn)1,F(xiàn)2分別是其左、右焦點(diǎn),A是橢圓上一點(diǎn),$\overrightarrow{A{F}_{2}}$•$\overrightarrow{{F}_{1}{F}_{2}}$=0,直線AF1的斜率為$\frac{\sqrt{3}}{12}$,長(zhǎng)軸長(zhǎng)為8.
(1)求橢圓C的方程;
(2)直線y=kx+$\frac{3}{2}$(k≠0)交橢圓C于不同的點(diǎn)E,F(xiàn),且E,F(xiàn)都在以B(0,-2)為圓心的圓上,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓方程為$\frac{{x}^{2}}{2}$+y2=1,點(diǎn)B(0,1)為橢圓的上頂點(diǎn),直線l:y=kx+m交橢圓于P、Q兩點(diǎn),設(shè)直線PB,QB的斜率分別為k1、k2,且k1k2=1
(1)求證:直線l過(guò)定點(diǎn)M,并求出點(diǎn)M的坐標(biāo);
(2)求△BPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=log2[ax2+(a-1)x+$\frac{1}{4}$].
(1)若定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)若值域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知圓C:x2+y2-2x-4y+1=0上存在兩點(diǎn)關(guān)于直線l:x+my+1=0對(duì)稱,則實(shí)數(shù)m=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=|x-a|.
(Ⅰ)當(dāng)a=2時(shí),解不等式f(x)≥|x|+1;
(Ⅱ)若f(x)≤1在[0,1]上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖程序當(dāng)x=38時(shí)運(yùn)行后輸出的結(jié)果為( 。
A.38B.83C.80D.77

查看答案和解析>>

同步練習(xí)冊(cè)答案