9.已知數(shù)列{an}的通項(xiàng)公式是an=$\frac{{2}^{n}-1}{{2}^{n}}$,其前n項(xiàng)和Sn=$\frac{321}{64}$,則項(xiàng)數(shù)n的值等于6.

分析 由an=1-$\frac{1}{{2}^{n}}$,根據(jù)等比數(shù)列前n項(xiàng)和公式,即可求得Sn,列方程,即可求得n的值.

解答 解:由數(shù)列{an}的通項(xiàng)公式是an=$\frac{{2}^{n}-1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$,
前n項(xiàng)和Sn=n-$\frac{\frac{1}{2}-\frac{1}{{2}^{n+1}}}{1-\frac{1}{2}}$=n-1+$\frac{1}{{2}^{n}}$,
由Sn=$\frac{321}{64}$,則n-1+$\frac{1}{{2}^{n}}$=$\frac{321}{64}$,解得:n=6,
∴項(xiàng)數(shù)n的值為6,
故答案為:6.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式,等比數(shù)列的前n項(xiàng)和公式,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.某中學(xué)計(jì)劃派出x名女生,y名男生去參加某項(xiàng)活動(dòng),若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}2x-y>5\\ x-y<2\\ x<7\end{array}\right.$則該中學(xué)最多派12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)$f(x)=sin(4x+\frac{π}{6})$的最小正周期為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知拋物線C:x2=2py(p>0),P,Q是C上任意兩點(diǎn),點(diǎn)M(0,-1)滿足$\overrightarrow{MP}•\overrightarrow{MQ}≥0$,則p的取值范圍是(0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.袋中有外觀相同的紅球,黑球各1個(gè),現(xiàn)依次有放回地隨機(jī)摸取3次,每次摸取1個(gè)球,若摸到紅球時(shí)得2分,摸到黑球時(shí)得1分,則3次摸球所得總分為5的概率為( 。
A.$\frac{5}{7}$B.$\frac{6}{7}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)集合A={x|x(x+1)≤0},集合B={x|2x>1},則集合A∪B等于( 。
A.{x|x≥0}B.{x|x≥-1}C.{x|x>0}D.{x|x>-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,若a=1,∠A=$\frac{π}{4}$,則$\frac{{\sqrt{2}b}}{sinC+cosC}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)集合A={x|x2-3x+2>0},B={x|3x-4>0},則A∩B=( 。
A.(-2,-$\frac{4}{3}$)B.(-2,$\frac{4}{3}$)C.(1,$\frac{4}{3}$)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-\frac{3x+2}{x+1},x∈(-1,0]}\\{x,x∈(0,1]}\end{array}\right.$且g(x)=mx+m,若方程g(x)=f(x)在(-1,1]內(nèi)有且僅有兩個(gè)不同的根,則實(shí)數(shù)m的取值范圍是( 。
A.(-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$]B.(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$]C.(-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$]D.(-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案