定義運(yùn)算
.
ab
cd
.
=ad-bc、若cosα=
1
7
,
.
sinαsinβ
cosαcosβ
.
=
3
3
14
,0<β<α<
π
2
,則β等于( 。
A、
π
12
B、
π
6
C、
π
4
D、
π
3
分析:根據(jù)新定義化簡(jiǎn)原式,然后根據(jù)兩角差的正弦函數(shù)公式變形得到sin(α-β)的值,根據(jù)0<β<α<
π
2
,利用同角三角函數(shù)間的基本關(guān)系求出cos(α-β),再根據(jù)cosα求出sinα,利用β=[α-(α-β)]兩邊取正切即可得到tanβ的值,根據(jù)特殊角的三角函數(shù)值即可求出β.
解答:解:依題設(shè)得:
sinα•cosβ-cosα•sinβ=sin(α-β)=
3
3
14

∵0<β<α<
π
2
,∴cos(α-β)=
13
14

又∵cosα=
1
7
,∴sinα=
4
3
7

sinβ=sin[α-(α-β)]=sinα•cos(α-β)-cosα•sin(α-β)
=
4
3
7
×
13
14
-
1
7
×
3
3
14
=
3
2

∴β=
π
3

故選D
點(diǎn)評(píng):此題要求學(xué)生會(huì)根據(jù)新定義化簡(jiǎn)求值,靈活運(yùn)用角度的變換解決數(shù)學(xué)問(wèn)題.掌握兩角和與差的正弦函數(shù)公式的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算
.
ab
cd
.
=ad-bc,若復(fù)數(shù)x=
2-i
3+i
,y=
.
4i3-xi
1+ix+i
.
,則y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算
.
ab
cd
.
=ad-bc
,則符合條件
.
x-11-2y
1+2yx-1
.
=0的點(diǎn)P (x,y)的軌跡方程為(  )
A、(x-1)2+4y2=1
B、(x-1)2-4y2=1
C、(x-1)2+y2=1
D、(x-1)2-y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算
.
ab
cd
.
=ad-bc,則函數(shù)f(x)=
.
3
3
sinx
1cosx
.
圖象的一條對(duì)稱(chēng)軸方程是( 。
A、x=
6
B、x=
3
C、x=
π
3
D、x=
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算
ab
cd
e
f
=
ae+bf
ce+df
,如
12
03
4
5
=
14
15
,已知α+β=
π
2
,α-β=π,則
sinαcosα
cosαsinα
cosβ
sinβ
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算
.
ab
cd
.
=ad-bc,則對(duì)復(fù)數(shù)z=x+yi(x,y∈R)符合條件
.
z1
z2i
.
=3+2i的復(fù)數(shù)z等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案