【題目】如圖,在四棱錐中,底面ABCD為梯形,AB//CD,,AB=AD=2CD=2,△ADP為等邊三角形.

(1)當(dāng)PB長(zhǎng)為多少時(shí),平面平面ABCD?并說(shuō)明理由;

(2)若二面角大小為150°,求直線AB與平面PBC所成角的正弦值.

【答案】(1)當(dāng)時(shí),平面平面,詳見解析(2)

【解析】

(1)根據(jù)平面和平面垂直可得線面垂直,從而可得,利用直角三角形知識(shí)可得的長(zhǎng);

(2)構(gòu)建空間直角坐標(biāo)系,利用法向量求解直線AB與平面PBC所成角的正弦值.

解:(1)當(dāng)時(shí),平面平面,

證明如下:在中,因?yàn)?/span>,所以,

,,所以平面,

平面,所以平面平面

2)分別取線段的中點(diǎn),連接,因?yàn)?/span>為等邊三角形,的中點(diǎn),所以,的中點(diǎn),所以,

,所以,故為二面角的平面角,所以

如圖,分別以的方向以及垂直于平面向上的方向作為軸的正方向,建立空間直角坐標(biāo)系

因?yàn)?/span>,所以,,.

可得,

設(shè)為平面的一個(gè)法向量,則有

,令

可得,

設(shè)與平面所成角為,則有

所以直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時(shí),若直線是函數(shù)的圖象的切線,求的最小值;

(2)設(shè)函數(shù),若上存在極值,求的取值范圍,并判斷極值的正負(fù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】手機(jī)支付也稱為移動(dòng)支付,是指允許用戶使用其移動(dòng)終端(通常是手機(jī))對(duì)所消費(fèi)的商品或服務(wù)進(jìn)行賬務(wù)支付的一種服務(wù)方式.隨著信息技術(shù)的發(fā)展,手機(jī)支付越來(lái)越成為人們喜歡的支付方式.某機(jī)構(gòu)對(duì)某地區(qū)年齡在1575歲的人群是否使用手機(jī)支付的情況進(jìn)行了調(diào)查,隨機(jī)抽取了100人,其年齡頻率分布表和使用手機(jī)支付的人數(shù)如下所示:(年齡單位:歲)

年齡段

[15,25

[25,35

[35,45

[45,55

[55,65

[65,75]

頻率

0.1

0.32

0.28

0.22

0.05

0.03

使用人數(shù)

8

28

24

12

2

1

1)若以45歲為分界點(diǎn),根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為使用手機(jī)支付與年齡有關(guān)?

年齡低于45

年齡不低于45

使用手機(jī)支付

不使用手機(jī)支付

2)若從年齡在[55,65),[65,75]的樣本中各隨機(jī)選取2人進(jìn)行座談,記選中的4人中使用手機(jī)支付的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù):

PK2k0

0.025

0.010

0.005

0.001

k0

3.841

6.635

7.879

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點(diǎn)P,Q分別為A1B1BC的中點(diǎn).

(1)求異面直線BPAC1所成角的余弦值;

(2)求直線CC1與平面AQC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)經(jīng)典名著,其中有這樣一個(gè)問(wèn)題:今有圓材,埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長(zhǎng)一尺.問(wèn)徑幾何?其意為:今有-圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該木材,鋸口深一寸,鋸道長(zhǎng)-尺.問(wèn)這塊圓柱形木材的直徑是多少?現(xiàn)有長(zhǎng)為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內(nèi)的部分).已知弦尺,弓形高寸,估算該木材鑲嵌在墻體中的體積約為__________立方寸.(結(jié)果保留整數(shù))

注:l丈=10尺=100寸,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)是偶函數(shù),求實(shí)數(shù)的值;

2)若函數(shù),關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年是中國(guó)成立70周年,也是全面建成小康社會(huì)的關(guān)鍵之年.為了迎祖國(guó)70周年生日,全民齊心奮力建設(shè)小康社會(huì),某校特舉辦喜迎國(guó)慶,共建小康知識(shí)競(jìng)賽活動(dòng).下面的莖葉圖是參賽兩組選手答題得分情況,則下列說(shuō)法正確的是(

A.甲組選手得分的平均數(shù)小于乙組選手的平均數(shù)B.甲組選手得分的中位數(shù)大于乙組選手的中位數(shù)

C.甲組選手得分的中位數(shù)等于乙組選手的中位數(shù)D.甲組選手得分的方差大于乙組選手的的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.(其中實(shí)數(shù)).

1)分別求出p,q中關(guān)于x的不等式的解集MN;

2)若pq的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,ABADBCBD,平面ABD⊥平面BCD,點(diǎn)E,F(EA,D不重合)分別在棱AD,BD上,且EFAD.

求證:(1)EF∥平面ABC;

(2)ADAC.

查看答案和解析>>

同步練習(xí)冊(cè)答案