【題目】已知數(shù)列{an}滿足a1=1,a2=3,若|an+1﹣an|=2n(n∈N*),且{a2n﹣1}是遞增數(shù)列、{a2n}是遞減數(shù)列,則 = .
【答案】﹣
【解析】解:∵a1=1,a2=3,|an+1﹣an|=2n(n∈N*), ∴a3﹣a2=±22 ,
又{a2n﹣1}是遞增數(shù)列、{a2n}是遞減數(shù)列,
∴a3﹣a2=4=22;
同理可得,a4﹣a3=﹣23 ,
a5﹣a4=24 ,
a6﹣a5=﹣25 ,
…,
a2n﹣1﹣a2n﹣2=22n﹣2 ,
a2n﹣a2n﹣1=﹣22n﹣1 ,
∴a2n=(a2n﹣a2n﹣1)+(a2n﹣1﹣a2n﹣2)+…+(a3﹣a2)+(a2﹣a1)+a1=1+2+(22﹣23+24﹣…+22n﹣2﹣22n﹣1)=3+ = ﹣ 22n﹣2= ﹣ 22n;
∴a2n﹣1=a2n+22n﹣1= + 22n;
∴則 = = =﹣ .
所以答案是:﹣ .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2009年至2015年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為: . .
參考數(shù)據(jù):(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2009年至2015年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2017年農(nóng)村居民家庭人均純收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足 ,若n∈N*時,anbn+1﹣bn+1=nbn .
(Ⅰ)求{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=anbn , 求{cn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解市民在購買食物時看營養(yǎng)說明與性別的關(guān)系,現(xiàn)在社會上隨機(jī)詢問了100名市民,得到如下2×2列聯(lián)表:
(1)是否有95%的把握認(rèn)為:“性別與讀營養(yǎng)說明有關(guān)系”,并說明理由;
(2)把頻率當(dāng)概率,若從社會上的男性市民中隨機(jī)抽取3位,記這3位中讀營養(yǎng)說明的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ).
男性 | 女性 | 總計(jì) | |
讀營養(yǎng)說明 | 40 | 20 | 60 |
不讀營養(yǎng)說明 | 20 | 20 | 40 |
總計(jì) | 60 | 40 | 100 |
參考公式和數(shù)據(jù):
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果一個數(shù)列從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差都大于2,則稱這個數(shù)列為“H型數(shù)列”.
(1)若數(shù)列{an}為“H型數(shù)列”,且a1= ﹣3,a2= ,a3=4,求實(shí)數(shù)m的取值范圍;
(2)是否存在首項(xiàng)為1的等差數(shù)列{an}為“H型數(shù)列”,且其前n項(xiàng)和Sn滿足Sn<n2+n(n∈N*)?若存在,請求出{an}的通項(xiàng)公式;若不存在,請說明理由.
(3)已知等比數(shù)列{an}的每一項(xiàng)均為正整數(shù),且{an}為“H型數(shù)列”,bn= an , cn= ,當(dāng)數(shù)列{bn}不是“H型數(shù)列”時,試判斷數(shù)列{cn}是否為“H型數(shù)列”,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,F(xiàn)1 , F2分別是橢圓C: =1(a>b>0)的左、右焦點(diǎn),且焦距為2 ,動弦AB平行于x軸,且|F1A|+|F1B|=4.
(1)求橢圓C的方程;
(2)若點(diǎn)P是橢圓C上異于點(diǎn) 、A,B的任意一點(diǎn),且直線PA、PB分別與y軸交于點(diǎn)M、N,若MF2、NF2的斜率分別為k1、k2 , 求證:k1k2是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義f(x)={x}(其中{x}表示不小于x的最小整數(shù))為“取上整函數(shù)”,例如{2.1}=3,{4}=4.以下關(guān)于“取上整函數(shù)”性質(zhì)的描述,正確的是( ) ①f(2x)=2f(x);
②若f(x1)=f(x2),則x1﹣x2<1;
③任意x1 , x2∈R,f(x1+x2)≤f(x1)+f(x2);
④ .
A.①②
B.①③
C.②③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜三棱柱ABC﹣A1B1C1的底面是直角三角形,∠ACB=90°,點(diǎn)B1在底面內(nèi)的射影恰好是BC的中點(diǎn),且BC=CA=2.
(1)求證:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B﹣AB1﹣C1的余弦值為 ,求斜三棱柱ABC﹣A1B1C1的高.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com