已知函數(shù),且函數(shù)在和處都取得極值。
(1)求實數(shù)的值;
(2)求函數(shù)的極值;
(3)若對任意,恒成立,求實數(shù)的取值范圍。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知為實數(shù),,
(Ⅰ)若a=2,求的單調(diào)遞增區(qū)間;
(Ⅱ)若,求在[-2,2] 上的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
①時,求的單調(diào)區(qū)間;
②若時,函數(shù)的圖象總在函數(shù)的圖象的上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)設(shè)
(1)若在上遞增,求的取值范圍;
(2)若在上的存在單調(diào)遞減區(qū)間 ,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱;
證明:當(dāng)時,
(3)如果且,證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
設(shè)函數(shù),且,其中是自然對數(shù)的底數(shù).
(1)求與的關(guān)系;
(2)若在其定義域內(nèi)為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一點,使得>成立,求實數(shù)的
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),().
(Ⅰ)已知函數(shù)的零點至少有一個在原點右側(cè),求實數(shù)的范圍.
(Ⅱ)記函數(shù)的圖象為曲線.設(shè)點,是曲線上的不同兩點.如果在曲線上存在點,使得:①;②曲線在點處的切線平行于直線,則稱函數(shù)存在“中值相依切線”.
試問:函數(shù)(且)是否存在“中值相依切線”,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,其中。
(1)若是函數(shù)的極值點,求實數(shù)的值。
(2)若對任意的,(為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com